779 resultados para anaesthetic nurse specialist


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our research has shown that schedules can be built mimicking a human scheduler by using a set of rules that involve domain knowledge. This chapter presents a Bayesian Optimization Algorithm (BOA) for the nurse scheduling problem that chooses such suitable scheduling rules from a set for each nurse’s assignment. Based on the idea of using probabilistic models, the BOA builds a Bayesian network for the set of promising solutions and samples these networks to generate new candidate solutions. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed algorithm may be suitable for other scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoubtedly, statistics has become one of the most important subjects in the modern world, where its applications are ubiquitous. The importance of statistics is not limited to statisticians, but also impacts upon non-statisticians who have to use statistics within their own disciplines. Several studies have indicated that most of the academic departments around the world have realized the importance of statistics to non-specialist students. Therefore, the number of students enrolled in statistics courses has vastly increased, coming from a variety of disciplines. Consequently, research within the scope of statistics education has been able to develop throughout the last few years. One important issue is how statistics is best taught to, and learned by, non-specialist students. This issue is controlled by several factors that affect the learning and teaching of statistics to non-specialist students, such as the use of technology, the role of the English language (especially for those whose first language is not English), the effectiveness of statistics teachers and their approach towards teaching statistics courses, students’ motivation to learn statistics and the relevance of statistics courses to the main subjects of non-specialist students. Several studies, focused on aspects of learning and teaching statistics, have been conducted in different countries around the world, particularly in Western countries. Conversely, the situation in Arab countries, especially in Saudi Arabia, is different; here, there is very little research in this scope, and what there is does not meet the needs of those countries towards the development of learning and teaching statistics to non-specialist students. This research was instituted in order to develop the field of statistics education. The purpose of this mixed methods study was to generate new insights into this subject by investigating how statistics courses are currently taught to non-specialist students in Saudi universities. Hence, this study will contribute towards filling the knowledge gap that exists in Saudi Arabia. This study used multiple data collection approaches, including questionnaire surveys from 1053 non-specialist students who had completed at least one statistics course in different colleges of the universities in Saudi Arabia. These surveys were followed up with qualitative data collected via semi-structured interviews with 16 teachers of statistics from colleges within all six universities where statistics is taught to non-specialist students in Saudi Arabia’s Eastern Region. The data from questionnaires included several types, so different techniques were used in analysis. Descriptive statistics were used to identify the demographic characteristics of the participants. The chi-square test was used to determine associations between variables. Based on the main issues that are raised from literature review, the questions (items scales) were grouped and five key groups of questions were obtained which are: 1) Effectiveness of Teachers; 2) English Language; 3) Relevance of Course; 4) Student Engagement; 5) Using Technology. Exploratory data analysis was used to explore these issues in more detail. Furthermore, with the existence of clustering in the data (students within departments within colleges, within universities), multilevel generalized linear models for dichotomous analysis have been used to clarify the effects of clustering at those levels. Factor analysis was conducted confirming the dimension reduction of variables (items scales). The data from teachers’ interviews were analysed on an individual basis. The responses were assigned to one of the eight themes that emerged from within the data: 1) the lack of students’ motivation to learn statistics; 2) students' participation; 3) students’ assessment; 4) the effective use of technology; 5) the level of previous mathematical and statistical skills of non-specialist students; 6) the English language ability of non-specialist students; 7) the need for extra time for teaching and learning statistics; and 8) the role of administrators. All the data from students and teachers indicated that the situation of learning and teaching statistics to non-specialist students in Saudi universities needs to be improved in order to meet the needs of those students. The findings of this study suggested a weakness in the use of statistical software applications in these courses. This study showed that there is lack of application of technology such as statistical software programs in these courses, which would allow non-specialist students to consolidate their knowledge. The results also indicated that English language is considered one of the main challenges in learning and teaching statistics, particularly in institutions where English is not used as the main language. Moreover, the weakness of mathematical skills of students is considered another major challenge. Additionally, the results indicated that there was a need to tailor statistics courses to the needs of non-specialist students based on their main subjects. The findings indicate that statistics teachers need to choose appropriate methods when teaching statistics courses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years genetic algorithms have emerged as a useful tool for the heuristic solution of complex discrete optimisation problems. In particular there has been considerable interest in their use in tackling problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle constraints and successful implementations usually require some sort of modification to enable the search to exploit problem specific knowledge in order to overcome this shortcoming. This paper is concerned with the development of a family of genetic algorithms for the solution of a nurse rostering problem at a major UK hospital. The hospital is made up of wards of up to 30 nurses. Each ward has its own group of nurses whose shifts have to be scheduled on a weekly basis. In addition to fulfilling the minimum demand for staff over three daily shifts, nurses’ wishes and qualifications have to be taken into account. The schedules must also be seen to be fair, in that unpopular shifts have to be spread evenly amongst all nurses, and other restrictions, such as team nursing and special conditions for senior staff, have to be satisfied. The basis of the family of genetic algorithms is a classical genetic algorithm consisting of n-point crossover, single-bit mutation and a rank-based selection. The solution space consists of all schedules in which each nurse works the required number of shifts, but the remaining constraints, both hard and soft, are relaxed and penalised in the fitness function. The talk will start with a detailed description of the problem and the initial implementation and will go on to highlight the shortcomings of such an approach, in terms of the key element of balancing feasibility, i.e. covering the demand and work regulations, and quality, as measured by the nurses’ preferences. A series of experiments involving parameter adaptation, niching, intelligent weights, delta coding, local hill climbing, migration and special selection rules will then be outlined and it will be shown how a series of these enhancements were able to eradicate these difficulties. Results based on several months’ real data will be used to measure the impact of each modification, and to show that the final algorithm is able to compete with a tabu search approach currently employed at the hospital. The talk will conclude with some observations as to the overall quality of this approach to this and similar problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is considerable interest in the use of genetic algorithms to solve problems arising in the areas of scheduling and timetabling. However, the classical genetic algorithm paradigm is not well equipped to handle the conflict between objectives and constraints that typically occurs in such problems. In order to overcome this, successful implementations frequently make use of problem specific knowledge. This paper is concerned with the development of a GA for a nurse rostering problem at a major UK hospital. The structure of the constraints is used as the basis for a co-evolutionary strategy using co-operating sub-populations. Problem specific knowledge is also used to define a system of incentives and disincentives, and a complementary mutation operator. Empirical results based on 52 weeks of live data show how these features are able to improve an unsuccessful canonical GA to the point where it is able to provide a practical solution to the problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract. Two ideas taken from Bayesian optimization and classifier systems are presented for personnel scheduling based on choosing a suitable scheduling rule from a set for each person's assignment. Unlike our previous work of using genetic algorithms whose learning is implicit, the learning in both approaches is explicit, i.e. we are able to identify building blocks directly. To achieve this target, the Bayesian optimization algorithm builds a Bayesian network of the joint probability distribution of the rules used to construct solutions, while the adapted classifier system assigns each rule a strength value that is constantly updated according to its usefulness in the current situation. Computational results from 52 real data instances of nurse scheduling demonstrate the success of both approaches. It is also suggested that the learning mechanism in the proposed approaches might be suitable for other scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This monograph is a literary analysis of the novel One Flew over the Cuckoo's Nest, by Ken Kesey published in 1962, that explores the power struggle between its two main characters: Randle Patrick McMurphy and Nurse Ratched. This struggle involves their ways of exerting power, their roles inside the ward, their distinct personalities, their actions, and even their ideas about life, especially what constitutes sanity and insanity. The analysis is based on techniques from New Criticism and the Psychological Critical Approach

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enquadramento: Nas últimas décadas, tem-se assistido a um envelhecimento populacional crescente e a um progressivo aumento da institucionalização dos idosos. A institucionalização representa frequentemente para o idoso uma rutura com o seu passado, levando à perda da sua individualidade e consequentemente a um processo de isolamento que poderá contribuir para níveis elevados de insatisfação com a vida. O Investimento na vida pessoal remete-nos para a valorização e atribuição de objetivos de vida ao ser humano, naquela que é a última etapa da sua vida, em todos os seus atributos e caraterísticas, inclusive na sua complexa estrutura física, intelectual e espiritual. Objetivos: Avaliar o nível de Investimento na vida pessoal percecionado pelos idosos institucionalizados e analisar a sua relação com as variáveis socio demográficas, clínicas, e psicossociais. Métodos: Trata-se de um estudo não experimental, transversal, descritivo-correlacional e de caráter quantitativo, que foi realizado numa amostra não probabilística por conveniência, constituída por 90 pessoas idosas a residir nas ERPI do concelho de Vila Nova de Paiva. Para a mensuração das variáveis utilizou-se um instrumento de colheita de dados que integra uma secção de caraterização sócio demográfica, e uma secção de caraterização clínico-funcional (índice de Barthel), caraterização familiar (Escala de Apgar Familiar) e situacional, lazer (Índice de Atividades de Lazer), espiritualidade (Escala da Espiritualidade), perceção da vida atual (Escala de Satisfação com a Vida) e futura, e por fim a Escala de Avaliação de Investimento na Vida Pessoal. Resultados: Os dados mostram que a perceção dos idosos sobre o investimento na sua vida pessoal se distribui de uma forma relativamente equitativa por três níveis. Contudo, o maior grupo percentual (37,8%) perceciona o seu investimento como elevado, enquanto 32,2% o entende como baixo e o grupo mais reduzido (30,0%) o considera moderado. A análise por género mostra que os homens tendem a avaliar o investimento de uma forma mais positiva que as mulheres; também os idosos com habilitações académicas superiores (p= 0,041) e com maior nível de independência funcional (p= 0,037) são os que percecionam um maior investimento na vida pessoal. Constatamos ainda que a família tem um efeito significativo (p= 0,020) no nível do investimento na vida do idoso, à semelhança da existência de mais esperança (p= 0,002), maior satisfação com a vida (p= 0,013) e do desenvolvimento de planos para o futuro (p= 0,032). Conclusão: As evidências encontradas neste estudo mostram que há níveis diferenciados de Investimento na vida pessoal entre os idosos. Este Investimento correlaciona-se de forma significativa com diversas variáveis independentes que depois de devidamente identificadas devem ser promovidas para assegurar aos idosos um envelhecimento ativo e com qualidade. As competências atribuídas ao enfermeiro especialista em reabilitação são de uma mais-valia inegualável no desenvolvimento do referido envelhecimento com qualidade, quando inserido numa equipa multidisciplinar, nas Estruturas Residenciais Para Idosos. Palavras-chave: idosos, institucionalização, satisfação com a vida, investimento na vida pessoal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Bayesian optimisation algorithm for a nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. When a human scheduler works, he normally builds a schedule systematically following a set of rules. After much practice, the scheduler gradually masters the knowledge of which solution parts go well with others. He can identify good parts and is aware of the solution quality even if the scheduling process is not yet completed, thus having the ability to finish a schedule by using flexible, rather than fixed, rules. In this paper, we design a more human-like scheduling algorithm, by using a Bayesian optimisation algorithm to implement explicit learning from past solutions. A nurse scheduling problem from a UK hospital is used for testing. Unlike our previous work that used Genetic Algorithms to implement implicit learning [1], the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The Bayesian optimisation algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, new rule strings have been obtained. Sets of rule strings are generated in this way, some of which will replace previous strings based on fitness. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. For clarity, consider the following toy example of scheduling five nurses with two rules (1: random allocation, 2: allocate nurse to low-cost shifts). In the beginning of the search, the probabilities of choosing rule 1 or 2 for each nurse is equal, i.e. 50%. After a few iterations, due to the selection pressure and reinforcement learning, we experience two solution pathways: Because pure low-cost or random allocation produces low quality solutions, either rule 1 is used for the first 2-3 nurses and rule 2 on remainder or vice versa. In essence, Bayesian network learns 'use rule 2 after 2-3x using rule 1' or vice versa. It should be noted that for our and most other scheduling problems, the structure of the network model is known and all variables are fully observed. In this case, the goal of learning is to find the rule values that maximize the likelihood of the training data. Thus, learning can amount to 'counting' in the case of multinomial distributions. For our problem, we use our rules: Random, Cheapest Cost, Best Cover and Balance of Cost and Cover. In more detail, the steps of our Bayesian optimisation algorithm for nurse scheduling are: 1. Set t = 0, and generate an initial population P(0) at random; 2. Use roulette-wheel selection to choose a set of promising rule strings S(t) from P(t); 3. Compute conditional probabilities of each node according to this set of promising solutions; 4. Assign each nurse using roulette-wheel selection based on the rules' conditional probabilities. A set of new rule strings O(t) will be generated in this way; 5. Create a new population P(t+1) by replacing some rule strings from P(t) with O(t), and set t = t+1; 6. If the termination conditions are not met (we use 2000 generations), go to step 2. Computational results from 52 real data instances demonstrate the success of this approach. They also suggest that the learning mechanism in the proposed approach might be suitable for other scheduling problems. Another direction for further research is to see if there is a good constructing sequence for individual data instances, given a fixed nurse scheduling order. If so, the good patterns could be recognized and then extracted as new domain knowledge. Thus, by using this extracted knowledge, we can assign specific rules to the corresponding nurses beforehand, and only schedule the remaining nurses with all available rules, making it possible to reduce the solution space. Acknowledgements The work was funded by the UK Government's major funding agency, Engineering and Physical Sciences Research Council (EPSRC), under grand GR/R92899/01. References [1] Aickelin U, "An Indirect Genetic Algorithm for Set Covering Problems", Journal of the Operational Research Society, 53(10): 1118-1126,

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes a new memetic evolutionary algorithm to achieve explicit learning in rule-based nurse rostering, which involves applying a set of heuristic rules for each nurse's assignment. The main framework of the algorithm is an estimation of distribution algorithm, in which an ant-miner methodology improves the individual solutions produced in each generation. Unlike our previous work (where learning is implicit), the learning in the memetic estimation of distribution algorithm is explicit, i.e. we are able to identify building blocks directly. The overall approach learns by building a probabilistic model, i.e. an estimation of the probability distribution of individual nurse-rule pairs that are used to construct schedules. The local search processor (i.e. the ant-miner) reinforces nurse-rule pairs that receive higher rewards. A challenging real world nurse rostering problem is used as the test problem. Computational results show that the proposed approach outperforms most existing approaches. It is suggested that the learning methodologies suggested in this paper may be applied to other scheduling problems where schedules are built systematically according to specific rules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Schedules can be built in a similar way to a human scheduler by using a set of rules that involve domain knowledge. This paper presents an Estimation of Distribution Algorithm (EDA) for the nurse scheduling problem, which involves choosing a suitable scheduling rule from a set for the assignment of each nurse. Unlike previous work that used Genetic Algorithms (GAs) to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. we identify and mix building blocks directly. The EDA is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a Genetic Algorithms approach to a manpower-scheduling problem arising at a major UK hospital. Although Genetic Algorithms have been successfully used for similar problems in the past, they always had to overcome the limitations of the classical Genetic Algorithms paradigm in handling the conflict between objectives and constraints. The approach taken here is to use an indirect coding based on permutations of the nurses, and a heuristic decoder that builds schedules from these permutations. Computational experiments based on 52 weeks of live data are used to evaluate three different decoders with varying levels of intelligence, and four well-known crossover operators. Results are further enhanced by introducing a hybrid crossover operator and by making use of simple bounds to reduce the size of the solution space. The results reveal that the proposed algorithm is able to find high quality solutions and is both faster and more flexible than a recently published Tabu Search approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this research is twofold: Firstly, to model and solve a complex nurse scheduling problem with an integer programming formulation and evolutionary algorithms. Secondly, to detail a novel statistical method of comparing and hence building better scheduling algorithms by identifying successful algorithm modifications. The comparison method captures the results of algorithms in a single figure that can then be compared using traditional statistical techniques. Thus, the proposed method of comparing algorithms is an objective procedure designed to assist in the process of improving an algorithm. This is achieved even when some results are non-numeric or missing due to infeasibility. The final algorithm outperforms all previous evolutionary algorithms, which relied on human expertise for modification.