973 resultados para acid-base equilibrium
Resumo:
The present paper describes the synthesis of molecularly imprinted polymer - poly(methacrylic acid)/silica and reports its performance feasibility with desired adsorption capacity and selectivity for cholesterol extraction. Two imprinted hybrid materials were synthesized at different methacrylic acid (MAA)/tetraethoxysilane (TEOS) molar ratios (6:1 and 1:5) and characterized by FT-IR, TGA, SEM and textural data. Cholesterol adsorption on hybrid materials took place preferably in apolar solvent medium, especially in chloroform. From the kinetic data, the equilibrium time was reached quickly, being 12 and 20 min for the polymers synthesized at MAA/TEOS molar ratio of 6:1 and 1:5, respectively. The pseudo-second-order model provided the best fit for cholesterol adsorption on polymers, confirming the chemical nature of the adsorption process, while the dual-site Langmuir-Freundlich equation presented the best fit to the experimental data, suggesting the existence of two kinds of adsorption sites on both polymers. The maximum adsorption capacities obtained for the polymers synthesized at MAA/TEOS molar ratios of 6:1 and 1:5 were found to be 214.8 and 166.4 mg g(-1), respectively. The results from isotherm data also indicated higher adsorption capacity for both imprinted polymers regarding to corresponding non-imprinted polymers. Nevertheless, taking into account the retention parameters and selectivity of cholesterol in the presence of structurally analogue compounds (5-α-cholestane and 7-dehydrocholesterol), it was observed that the polymer synthesized at the MAA/TEOS molar ratio of 6:1 was much more selective for cholesterol than the one prepared at the ratio of 1:5, thus suggesting that selective binding sites ascribed to the carboxyl group from MAA play a central role in the imprinting effect created on MIP.
Resumo:
This study evaluated the influence of a cola-type soft drink and a soy-based orange juice on the surface and subsurface erosion of primary enamel, as a function of the exposure time. Seventy-five primary incisors were divided for microhardness test (n=45) or scanning electron microscopy (SEM) analysis (n=30). The specimens were randomly assigned to 3 groups: 1 - artificial saliva (control); 2 - cola-type soft drink; and 3 - soy-based orange juice. Immersion cycles in the beverages were undertaken under agitation for 5 min, 3 times a day, during 60 days. Surface microhardness was measured at 7, 15, 30, 45 and 60 days. After 60 days, specimens were bisected and subsurface microhardness was measured at 30, 60, 90, 120, 150 and 200 µm from the surface exposed. Data were analyzed by ANOVA and Tukey’s test (a=0.05). Groups 2 and 3 presented similar decrease of surface microhardness. Regarding subsurface microhardness, group 2 presented the lowest values. SEM images revealed that after 60 days the surfaces clearly exhibited structural loss, unlike those immersed in artificial saliva. It may be concluded that erosion of the surfaces exposed to the cola-type soft drink was more accentuated and directly proportional to the exposure time.
Resumo:
Major problems with valve bioprostheses are associated with progressive structural deterioration and calcification, directly associated with the use of glutaraldehyde (GA). This work describes the effects of GA processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties of 0.5% GA crosslinked bovine pericardium (BP). The results showed that while the treatment of 0.5% GA crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower GA concentration followed by the conventional treatment (0.5% GA). Improvements in mechanical properties probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base).The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive procedure for the manufacture of heart valve bioprostheses.
Resumo:
It was evaluated the effects of metabolizable energy (ME) and digestible lysine (dLYS) densities on performance and body composition of weaned piglets. The study used 114 piglets weaned at 7.4 ± 0.80 kg, out of which 108 were allotted in the nursery and 6 were slaughtered on the weaning day to determine comparative data of body chemical composition. Six nutrients densities were stipulated from a previous study based on the highest nitrogen retention, maintaining the following ME:LYS relationship in the experimental diets: 3,390:1.291; 3,450:1.409; 3,650:1.411; 3,780:1.461; 3,940:1.507; and 4,109 kcal/kg ME:1.564% dLYS. The experimental diets were offered for 13 days when the piglets reached 12.986 ± 1.449 kg of body weight. The probable residual effects of nutritional density on the subsequent performance of the piglets were evaluated. At the end of initial phase 1, six piglets from each density were slaughtered to determine their chemical composition in body fractions and empty body. There was no significant influence of nutritional levels on the performance of the piglets at the end of the evaluation. The results of food conversion and body composition confirm the level indicated in the previous study, 4 g dLYS/Mcal of ME. The increase of energy and lysine densities confirms the need for a correct relationship among both of them to assure better performance of the piglets at the beginning of the growing phase.
Resumo:
Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.
Resumo:
Information on nutritional requirement of some Brazilian farmed fish species, especially essential amino acids (EAA) requirements, is scarce. The estimation of amino acids requirements based on amino acid composition of fish is a fast and reliable alternative. Matrinxa, Brycon amazonicus, and curimbata, Prochilodus lineatus, are two important Brazilian fish with potential for aquaculture. The objective of the present study was to estimate amino acid requirements of these species and analyze similarities among amino acid composition of different fish species by cluster analysis. To estimate amino acid requirement, the following formula was used: amino acid requirement = [(amount of an individual amino acid in fish muscle tissue) x (average totalEAA requirement among channel catfish, Ictalurus punctatus, Nile tilapia, Oreochromis niloticus, and common carp, Cyprinus carpio)]/(average fish muscle totalEAA). Most values found lie within the range of requirements determined for other omnivorous fish species, in exception of leucine requirement estimated for both species, and arginine requirement estimated for matrinxa alone. Rather than writing off the need for regular dose-response assays under the ideal protein concept to determine EAA requirements of curimbata and matrinxa, results set solid base for the study of tropical species dietary amino acids requirements.
Resumo:
BACKGROUND: Ascorbic acid is a very important compound for plants. It has essential functions, mainly as an antioxidant and growth regulator. Ascorbic acid biosynthesis has been extensively studied, but studies in fruits are very limited. In this work we studied the influence of five enzymes involved in synthesis (L-galactono-1,4-lactone dehydrogenase, GalLDH, EC 1.3.2.3), oxidation (ascorbate oxidase, EC 1.10.3.3, and ascorbate peroxidase, APX, EC and recycling (monodehydroascorbate reductase, EC 1.6.5.4, and dehydroascorbate reductase, DHAR, EC 1.8.5.1) on changes in ascorbic acid content during development and ripening of mangoes (Mangifera indica L. cv. Keitt) and during the ripening of white pulp guavas (Psidium guayava L. cv. Paloma). RESULTS: It was found that there was a balance between the activities of GalLDH, APX and DHAR, both in mangoes and guavas. CONCLUSIONS: Equilibrium between the enzymatic activities of synthesis, catabolism and recycling is important for the regulation of ascorbic acid content in mango and guava. These results have contributed to understanding some of the changes that occur in ascorbic acid levels during fruit ripening. (C) 2008 Society of Chemical Industry.
Resumo:
A number of fatty acid ethyl esters (FAEEs) have recently been detected in meconium samples. Several of these FAEEs have been evaluated as possible biomarkers for in utero ethanol exposure. In the present study, a method was optimized and validated for the simultaneous determination of eight FAEEs (ethyl laurate, ethyl myristate, ethyl palmitate, ethyl palmitoleate, ethyl stearate, ethyl oleate, ethyl linoleate and ethyl arachidonate) in meconium samples. FAEEs were extracted by headspace solid-phase microextraction. Analyte detection and quantification were carried out using GC-MS operated in chemical ionization mode. The corresponding D5-ethyl esters were synthesized and used as internal standards. The LOQ and LOD for each analyte were <150 and <100 ng/g, respectively. The method showed good linearity (r(2)>0.98) in the concentration range studied (LOQ -2000 ng/g). The intra- and interday imprecision, given by the RSD of the method, was lower than 15% for all FAEEs studied. The validated method was applied to 63 authentic specimens. FAEEs could be detected in alcohol-exposed newborns ( >600 ng/g cumulative concentration). Interestingly, FAEEs could also be detected in some non-exposed newborns, although the concentrations were much lower than those measured in exposed cases.
Resumo:
Clavulanic acid (CA) is a beta-lactam antibiotic that alone exhibits only weak antibacterial activity, but is a potent inhibitor of beta-lactamases enzymes. For this reason it is used as a therapeutic in conjunction with penicillins and cephalosporins. However, it is a well-known fact that it is unstable not only during its production phase, but also during downstream processing. Therefore, the main objective of this study was the evaluation of CA long-term stability under different conditions of pH and temperature, in the presence of variable levels of different salts, so as to suggest the best conditions to perform its simultaneous production and recovery by two-phase polymer/salt liquid-liquid extractive fermentation. To this purpose, the CA stability was investigated at different values of pH (4.0-8.0) and temperature (20-45 degrees C), and the best conditions were met at a pH 6.0-7.2 and 20 degrees C. Its stability was also investigated at 30 degrees C in the presence of NaCl, Na(2)SO(4), CaCl(2) and MgSO(4) at concentrations of 0.1 and 0.5 M in Mcllvaine buffer (pH 6.5). All salts led to increased CA instability with respect to the buffer alone, and this effect decreased in following sequence: Na(2)SO(4) > MgSO(4) > CaCl(2) > NaCl. Kinetic and thermodynamic parameters of CA degradation were calculated adopting a new model that took into consideration the equilibrium between the active and a reversibly inactivated form of CA after long-time degradation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Um complexo de alta fotoluminescência é proposto como marcador óptico para a identificação de resíduos de tiro (GSR). O marcador é o complexo [Eu(PIC)3(NMK)3], de fórmula molecular Eu(C6H2N3O7)3.(C7H13NO)3, que apresenta o íon Eu3+ e os ligantes ácido pícrico (PIC) e n-metil-Ɛ-caprolactama (NMK). Foi realizada a caracterização quimicamente através de espectroscopia de emissão, espectroscopia de infravermelho com transformada de Fourier (FTIR), termogravimetria e análise térmica diferencial (TG/DTA), e espectrometria de massas com ionização por eletrospray e ressonância ciclotrônica de íons por transformada de Fourier (ESI-FT-ICR MS), e, em seguida, foram adicionadas diferentes massas do complexo a munições convencionais (de 2 a 50 mg por cartucho). Após os tiros, o GSR marcado foi visualmente e quimicamente detectado por irradiação UV (ʎ = 395 nm) e ESI-FT-ICR MS, respectivamente. Os resultados mostraram uma fotoluminescência eficiente e duradoura, sendo facilmente visível sobre a superfície do alvo, no ambiente, no cartucho deflagrado, na arma de fogo, e sobre as mãos e braços do atirador quando utilizada massa a partir de 25 mg do marcador em cartuchos .38 e 50 mg em cartuchos .40. Sua toxicidade aguda também foi avaliada empregando-se o Protocolo 423 da Organização para a Cooperação e Desenvolvimento Econômico (OECD) e apresentou DL50 de 1000 mg.kg-1, sendo classificado como de categoria 4 na escala do Sistema Globalmente Harmonizado de Classificação e Rotulagem de Produtos Químicos (GHS), considerado, portanto, de média toxicidade. O composto mostrou ser menos tóxico do que os componentes inorgânicos de munições convencionais (em especial o Pb), justificando o seu emprego como marcador de GSR.
Resumo:
Biodiesel is the main alternative to fossil diesel and it may be produced from different feedstocks such as semi-refined vegetable oils, waste frying oils or animal fats. However, these feedstocks usually contain significant amounts of free fatty acids (FFA) that make them inadequate for the direct base catalyzed transesterification reaction (where the FFA content should be lower than 4%). The present work describes a possible method for the pre-treatment of oils with a high content of FFA (20 to 50%) by esterification with glycerol. In order to reduce the FFA content, the reaction between these FFA and an esterification agent is carried out before the transesterification reaction. The reaction kinetics was studied in terms of its main factors such astemperature, % of glycerin excess, % of catalyst used, stirring velocity and type of catalyst used. The results showed that glycerolysis is a promising pretreatment to acidic oils or fats (> 20%) as they led to the production of an intermediary material with a low content of FFA that can be used directly in thetransesterification reaction for the production of biodiesel. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Different problems are daily discuss on environmental aspects such acid rain, eutrophication, global warming and an others problems. Rarely do we find some discussions about phosphorus problematic. Through the years the phosphorus as been a real problem and must be more discussed. On this thesis was done a global material flow analysis of phosphorus, based on data from the year 2004, the production of phosphate rock in that year was 18.9 million tones, almost this amount it was used as fertilizer on the soil and the plants only can uptake, on average, 20% of the input of fertilizer to grow up, the remainder is lost for the phosphorus soil. In the phosphorus soil there is equilibrium between the phosphorus available to uptake from the plants and the phosphorus associate with other compounds, this equilibrium depends of the kind of soil and is related with the soil pH. A reserve inventory was done and we have 15,000 million tones as reserve, the amount that is economical available. The reserve base is estimated in 47,000 million tones. The major reserves can be found in Morocco and Western Sahara, United Sates, China and South Africa. The reserve estimated in 2009 was 15,000 million tone of phosphate rock or 1,963 million tone of P. If every year the mined phosphate rock is around 22 Mt/yr (phosphorus production on 2008 USGS 2009), and each year the consumption of phosphorus increases because of the food demand, the reserves of phosphate rock will be finished in about 90 years, or maybe even less. About the value/impact assessment was done a qualitative analysis, if on the future we don’t have more phosphate rock to produce fertilizers, it is expected a drop on the crops yields, each depends of the kind of the soil and the impact on the humans feed and animal production will not be a relevant problem. We can recovery phosphorus from different waste streams such as ploughing crop residues back into the soil, Food processing plants and food retailers, Human and animal excreta, Meat and bone meal, Manure fibre, Sewage sludge and wastewater. Some of these examples are developed in the paper.
Resumo:
In this work, the mechanical behavior of polyhyroxyalkanoate (PHA)/poly(lactic acid) (PLA) blends is investigated in a wide range of compositions. The mechanical properties can be optimized by varying the PHA contents of the blend. The flexural and tensile properties were estimated by different models: the rule of mixtures, Kerner–Uemura–Takayanagi (KUT) model, Nicolai–Narkis model and Béla–Pukánsky model. This study was aimed at investigating the adhesion between the two material phases. The results anticipate a good adhesion between both phases. Nevertheless, for low levels of incorporation of PHA (up to 30%), where PLA is expectantly the matrix, the experimental data seem to deviate from the perfect adhesion models, suggesting a decrease in the adhesion between both polymeric phases when PHA is the disperse phase. For the tensile modulus, a linear relationship is found, following the rules of mixtures (or a KUT model with perfect adhesion between phases) denoting a good adhesion between the phases over the composition range. The incorporation of PHA in the blend leads to a decrease in the flexural modulus but, at the same time, increases the tensile modulus. The impact energy of the blends varies more than 157% over the entire composition. For blends with PHA weight fraction lower than 50%, the impact strength of the blend is higher than the pure base polymers. The highest synergetic effect is found when the PLA is the matrix and the PHA is the disperse phase for the blend PHA/PLA of 30/70. The second maximum is found for the inverse composition of 70/30. PLA has a heat-deflection temperature (HDT) substantially lower than PHA. For the blends, the HDT increases with the increment in the percentage of the incorporation of PHA. With up to 50% PHA (PLA as matrix), the HDT is practically constant and equal to PLA value. Above this point (PHA matrix), the HDT of the polymer blends increases linearly with the percentage of addition of PHA.
Resumo:
The reaction between 2-aminobenzenesulfonic acid and 2-hydroxy-3-methoxybenzaldehyde produces the acyclic Schiff base 2-[(2-hydroxy-3-methoxyphenyl) methylideneamino] benzenesulfonic acid (H2L center dot 3H(2)O) (1). In situ reactions of this compound with Cu(II) salts and, eventually, in the presence of pyridine (py) or 2,2'-bipyridine (2,2'-bipy) lead to the formation of the mononuclear complexes [CuL(H2O)(2)] (2) and [CuL(2,2'-bipy)]center dot DMF center dot H2O (3) and the diphenoxo-bridged dicopper compounds [CuL(py)](2) (4) and [CuL(EtOH)](2)center dot 2H(2)O (5). In 2-5 the L-2-ligand acts as a tridentate chelating species by means of one of the O-sulfonate atoms, the O-phenoxo and the N-atoms. The remaining coordination sites are then occupied by H2O (in 2), 2,2'-bipyridine (in 3), pyridine (in 4) or EtOH (in 5). Hydrogen bond interactions resulted in R-2(2) (14) and in R-4(4)(12) graph sets leading to dimeric species (in 2 and 3, respectively), 1D chain associations (in 2 and 5) or a 2D network (1). Complexes 2-5 are applied as selective catalysts for the homogeneous peroxidative (with tert-butylhydroperoxide, TBHP) oxidation of primary and secondary alcohols, under solvent-and additive-free conditions and under low power microwave (MW) irradiation. A quantitative yield of acetophenone was obtained by oxidation of 1-phenylethanol with compound 4 [TOFs up to 7.6 x 10(3) h(-1)] after 20 min of MW irradiation, whereas the oxidation of benzyl alcohol to benzaldehyde is less effective (TOF 992 h(-1)). The selectivity of 4 to oxidize the alcohol relative to the ene function is demonstrated when using cinnamyl alcohol as substrate.
Resumo:
In this work we present the thermal characterization of the full scope of polyhydroxyalcanoate and poly(lactic acid) blends obtain by injection molding. Blends of polyhydroxyalcanoate and poly(lactic acid) (PHA/PLA) were prepared in different compositions ranging from 0–100% in steps of 10%. The blends were injection molded and then characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and wide angle X-ray diffraction (WAXD). The increment of PHA fraction increased the degree of crystallinity of the blend and the miscibility of the base polymers as verified by the Fox model. The WAXD analysis indicates that the presence of PHA hindered the PLA crystallization. The crystallization evolution trough PHA weight fraction (wf) shows a phase inversion around 50-60%. SEM analyses confirmed that the miscibility of PHA/PLA blends increased with the incorporation of PHA and became total for values of PHA higher that 50%.