905 resultados para Web Mining, Data Mining, User Topic Model, Web User Profiles
Resumo:
OntoTag - A Linguistic and Ontological Annotation Model Suitable for the Semantic Web
1. INTRODUCTION. LINGUISTIC TOOLS AND ANNOTATIONS: THEIR LIGHTS AND SHADOWS
Computational Linguistics is already a consolidated research area. It builds upon the results of other two major ones, namely Linguistics and Computer Science and Engineering, and it aims at developing computational models of human language (or natural language, as it is termed in this area). Possibly, its most well-known applications are the different tools developed so far for processing human language, such as machine translation systems and speech recognizers or dictation programs.
These tools for processing human language are commonly referred to as linguistic tools. Apart from the examples mentioned above, there are also other types of linguistic tools that perhaps are not so well-known, but on which most of the other applications of Computational Linguistics are built. These other types of linguistic tools comprise POS taggers, natural language parsers and semantic taggers, amongst others. All of them can be termed linguistic annotation tools.
Linguistic annotation tools are important assets. In fact, POS and semantic taggers (and, to a lesser extent, also natural language parsers) have become critical resources for the computer applications that process natural language. Hence, any computer application that has to analyse a text automatically and ‘intelligently’ will include at least a module for POS tagging. The more an application needs to ‘understand’ the meaning of the text it processes, the more linguistic tools and/or modules it will incorporate and integrate.
However, linguistic annotation tools have still some limitations, which can be summarised as follows:
1. Normally, they perform annotations only at a certain linguistic level (that is, Morphology, Syntax, Semantics, etc.).
2. They usually introduce a certain rate of errors and ambiguities when tagging. This error rate ranges from 10 percent up to 50 percent of the units annotated for unrestricted, general texts.
3. Their annotations are most frequently formulated in terms of an annotation schema designed and implemented ad hoc.
A priori, it seems that the interoperation and the integration of several linguistic tools into an appropriate software architecture could most likely solve the limitations stated in (1). Besides, integrating several linguistic annotation tools and making them interoperate could also minimise the limitation stated in (2). Nevertheless, in the latter case, all these tools should produce annotations for a common level, which would have to be combined in order to correct their corresponding errors and inaccuracies. Yet, the limitation stated in (3) prevents both types of integration and interoperation from being easily achieved.
In addition, most high-level annotation tools rely on other lower-level annotation tools and their outputs to generate their own ones. For example, sense-tagging tools (operating at the semantic level) often use POS taggers (operating at a lower level, i.e., the morphosyntactic) to identify the grammatical category of the word or lexical unit they are annotating. Accordingly, if a faulty or inaccurate low-level annotation tool is to be used by other higher-level one in its process, the errors and inaccuracies of the former should be minimised in advance. Otherwise, these errors and inaccuracies would be transferred to (and even magnified in) the annotations of the high-level annotation tool.
Therefore, it would be quite useful to find a way to
(i) correct or, at least, reduce the errors and the inaccuracies of lower-level linguistic tools;
(ii) unify the annotation schemas of different linguistic annotation tools or, more generally speaking, make these tools (as well as their annotations) interoperate.
Clearly, solving (i) and (ii) should ease the automatic annotation of web pages by means of linguistic tools, and their transformation into Semantic Web pages (Berners-Lee, Hendler and Lassila, 2001). Yet, as stated above, (ii) is a type of interoperability problem. There again, ontologies (Gruber, 1993; Borst, 1997) have been successfully applied thus far to solve several interoperability problems. Hence, ontologies should help solve also the problems and limitations of linguistic annotation tools aforementioned.
Thus, to summarise, the main aim of the present work was to combine somehow these separated approaches, mechanisms and tools for annotation from Linguistics and Ontological Engineering (and the Semantic Web) in a sort of hybrid (linguistic and ontological) annotation model, suitable for both areas. This hybrid (semantic) annotation model should (a) benefit from the advances, models, techniques, mechanisms and tools of these two areas; (b) minimise (and even solve, when possible) some of the problems found in each of them; and (c) be suitable for the Semantic Web. The concrete goals that helped attain this aim are presented in the following section.
2. GOALS OF THE PRESENT WORK
As mentioned above, the main goal of this work was to specify a hybrid (that is, linguistically-motivated and ontology-based) model of annotation suitable for the Semantic Web (i.e. it had to produce a semantic annotation of web page contents). This entailed that the tags included in the annotations of the model had to (1) represent linguistic concepts (or linguistic categories, as they are termed in ISO/DCR (2008)), in order for this model to be linguistically-motivated; (2) be ontological terms (i.e., use an ontological vocabulary), in order for the model to be ontology-based; and (3) be structured (linked) as a collection of ontology-based
Resumo:
In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.
Resumo:
Context: This paper addresses one of the major end-user development (EUD) challenges, namely, how to pack today?s EUD support tools with composable elements. This would give end users better access to more components which they can use to build a solution tailored to their own needs. The success of later end-user software engineering (EUSE) activities largely depends on how many components each tool has and how adaptable components are to multiple problem domains. Objective: A system for automatically adapting heterogeneous components to a common development environment would offer a sizeable saving of time and resources within the EUD support tool construction process. This paper presents an automated adaptation system for transforming EUD components to a standard format. Method: This system is based on the use of description logic. Based on a generic UML2 data model, this description logic is able to check whether an end-user component can be transformed to this modeling language through subsumption or as an instance of the UML2 model. Besides it automatically finds a consistent, non-ambiguous and finite set of XSLT mappings to automatically prepare data in order to leverage the component as part of a tool that conforms to the target UML2 component model. Results: The proposed system has been successfully applied to components from four prominent EUD tools. These components were automatically converted to a standard format. In order to validate the proposed system, rich internet applications (RIA) used as an operational support system for operators at a large services company were developed using automatically adapted standard format components. These RIAs would be impossible to develop using each EUD tool separately. Conclusion: The positive results of applying our system for automatically adapting components from current tool catalogues are indicative of the system?s effectiveness. Use of this system could foster the growth of web EUD component catalogues, leveraging a vast ecosystem of user-centred SaaS to further current EUSE trends.
Resumo:
The mobile apps market is a tremendous success, with millions of apps downloaded and used every day by users spread all around the world. For apps’ developers, having their apps published on one of the major app stores (e.g. Google Play market) is just the beginning of the apps lifecycle. Indeed, in order to successfully compete with the other apps in the market, an app has to be updated frequently by adding new attractive features and by fixing existing bugs. Clearly, any developer interested in increasing the success of her app should try to implement features desired by the app’s users and to fix bugs affecting the user experience of many of them. A precious source of information to decide how to collect users’ opinions and wishes is represented by the reviews left by users on the store from which they downloaded the app. However, to exploit such information the app’s developer should manually read each user review and verify if it contains useful information (e.g. suggestions for new features). This is something not doable if the app receives hundreds of reviews per day, as happens for the very popular apps on the market. In this work, our aim is to provide support to mobile apps developers by proposing a novel approach exploiting data mining, natural language processing, machine learning, and clustering techniques in order to classify the user reviews on the basis of the information they contain (e.g. useless, suggestion for new features, bugs reporting). Such an approach has been empirically evaluated and made available in a web-‐based tool publicly available to all apps’ developers. The achieved results showed that the developed tool: (i) is able to correctly categorise user reviews on the basis of their content (e.g. isolating those reporting bugs) with 78% of accuracy, (ii) produces clusters of reviews (e.g. groups together reviews indicating exactly the same bug to be fixed) that are meaningful from a developer’s point-‐of-‐view, and (iii) is considered useful by a software company working in the mobile apps’ development market.
Resumo:
This thesis is the result of a project whose objective has been to develop and deploy a dashboard for sentiment analysis of football in Twitter based on web components and D3.js. To do so, a visualisation server has been developed in order to present the data obtained from Twitter and analysed with Senpy. This visualisation server has been developed with Polymer web components and D3.js. Data mining has been done with a pipeline between Twitter, Senpy and ElasticSearch. Luigi have been used in this process because helps building complex pipelines of batch jobs, so it has analysed all tweets and stored them in ElasticSearch. To continue, D3.js has been used to create interactive widgets that make data easily accessible, this widgets will allow the user to interact with them and �filter the most interesting data for him. Polymer web components have been used to make this dashboard according to Google's material design and be able to show dynamic data in widgets. As a result, this project will allow an extensive analysis of the social network, pointing out the influence of players and teams and the emotions and sentiments that emerge in a lapse of time.
Resumo:
Arabidopsis thaliana, a small annual plant belonging to the mustard family, is the subject of study by an estimated 7000 researchers around the world. In addition to the large body of genetic, physiological and biochemical data gathered for this plant, it will be the first higher plant genome to be completely sequenced, with completion expected at the end of the year 2000. The sequencing effort has been coordinated by an international collaboration, the Arabidopsis Genome Initiative (AGI). The rationale for intensive investigation of Arabidopsis is that it is an excellent model for higher plants. In order to maximize use of the knowledge gained about this plant, there is a need for a comprehensive database and information retrieval and analysis system that will provide user-friendly access to Arabidopsis information. This paper describes the initial steps we have taken toward realizing these goals in a project called The Arabidopsis Information Resource (TAIR) (www.arabidopsis.org).
Resumo:
En esta memoria se presenta el diseño y desarrollo de una aplicación en la nube destinada a la compartición de objetos y servicios. El desarrollo de esta aplicación surge dentro del proyecto de I+D+i, SITAC: Social Internet of Things – Apps by and for the Crowd ITEA 2 11020, que trata de crear una arquitectura integradora y un “ecosistema” que incluya plataformas, herramientas y metodologías para facilitar la conexión y cooperación de entidades de distinto tipo conectadas a la red bien sean sistemas, máquinas, dispositivos o personas con dispositivos móviles personales como tabletas o teléfonos móviles. El proyecto innovará mediante la utilización de un modelo inspirado en las redes sociales para facilitar y unificar las interacciones tanto entre personas como entre personas y dispositivos. En este contexto surge la necesidad de desarrollar una aplicación destinada a la compartición de recursos en la nube que pueden ser tanto lógicos como físicos, y que esté orientada al big data. Ésta será la aplicación presentada en este trabajo, el “Resource Sharing Center”, que ofrece un servicio web para el intercambio y compartición de contenido, y un motor de recomendaciones basado en las preferencias de los usuarios. Con este objetivo, se han usado tecnologías de despliegue en la nube, como Elastic Beanstalk (el PaaS de Amazon Web Services), S3 (el sistema de almacenamiento de Amazon Web Services), SimpleDB (base de datos NoSQL) y HTML5 con JavaScript y Twitter Bootstrap para el desarrollo del front-end, siendo Python y Node.js las tecnologías usadas en el back end, y habiendo contribuido a la mejora de herramientas de clustering sobre big data. Por último, y de cara a realizar el estudio sobre las pruebas de carga de la aplicación se ha usado la herramienta ApacheJMeter.
Resumo:
Nowadays, data mining is based on low-level specications of the employed techniques typically bounded to a specic analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Here, we propose a model-driven approach based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (via data-warehousing technology) and the analysis models for data mining (tailored to a specic platform). Thus, analysts can concentrate on the analysis problem via conceptual data-mining models instead of low-level programming tasks related to the underlying-platform technical details. These tasks are now entrusted to the model-transformations scaffolding.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Tesis doctoral con mención europea en procesamiento del lenguaje natural realizada en la Universidad de Alicante por Ester Boldrini bajo la dirección del Dr. Patricio Martínez-Barco. El acto de defensa de la tesis tuvo lugar en la Universidad de Alicante el 23 de enero de 2012 ante el tribunal formado por los doctores Manuel Palomar (Universidad de Alicante), Dr. Paloma Moreda (UA), Dr. Mariona Taulé (Universidad de Barcelona), Dr. Horacio Saggion (Universitat Pompeu Fabra) y Dr. Mike Thelwall (University of Wolverhampton). Calificación: Sobresaliente Cum Laude por unanimidad.
Resumo:
The aim of this paper is to evaluate the efficacy of the application WebBootCaT to create specialised corpora automatically, investigating the translation of articles of association from Italian into English. The first section reflects on the relevant literature and proposes the utility of corpora for translators. The second section discusses the methodology employed, and the third section analyses the results obtained and comments on how language professionals could possibly exploit the application to its full. The fourth section provides a few concrete usage examples of the thus built corpora, to then conclude that WebBootCaT is a genuinely powerful tool that could be implemented by professional translators in order to save time and improve their translations in the long term.
Resumo:
Sentiment analysis or opinion mining aims to use automated tools to detect subjective information such as opinions, attitudes, and feelings expressed in text. This paper proposes a novel probabilistic modeling framework called joint sentiment-topic (JST) model based on latent Dirichlet allocation (LDA), which detects sentiment and topic simultaneously from text. A reparameterized version of the JST model called Reverse-JST, obtained by reversing the sequence of sentiment and topic generation in the modeling process, is also studied. Although JST is equivalent to Reverse-JST without a hierarchical prior, extensive experiments show that when sentiment priors are added, JST performs consistently better than Reverse-JST. Besides, unlike supervised approaches to sentiment classification which often fail to produce satisfactory performance when shifting to other domains, the weakly supervised nature of JST makes it highly portable to other domains. This is verified by the experimental results on data sets from five different domains where the JST model even outperforms existing semi-supervised approaches in some of the data sets despite using no labeled documents. Moreover, the topics and topic sentiment detected by JST are indeed coherent and informative. We hypothesize that the JST model can readily meet the demand of large-scale sentiment analysis from the web in an open-ended fashion.
Resumo:
eHabitat is a Web Processing Service (WPS) designed to compute the likelihood of finding ecosystems with equal properties. Inputs to the WPS, typically thematic geospatial "layers", can be discovered using standardised catalogues, and the outputs tailored to specific end user needs. Because these layers can range from geophysical data captured through remote sensing to socio-economical indicators, eHabitat is exposed to a broad range of different types and levels of uncertainties. Potentially chained to other services to perform ecological forecasting, for example, eHabitat would be an additional component further propagating uncertainties from a potentially long chain of model services. This integration of complex resources increases the challenges in dealing with uncertainty. For such a system, as envisaged by initiatives such as the "Model Web" from the Group on Earth Observations, to be used for policy or decision making, users must be provided with information on the quality of the outputs since all system components will be subject to uncertainty. UncertWeb will create the Uncertainty-Enabled Model Web by promoting interoperability between data and models with quantified uncertainty, building on existing open, international standards. It is the objective of this paper to illustrate a few key ideas behind UncertWeb using eHabitat to discuss the main types of uncertainties the WPS has to deal with and to present the benefits of the use of the UncertWeb framework.
Resumo:
Because some Web users will be able to design a template to visualize information from scratch, while other users need to automatically visualize information by changing some parameters, providing different levels of customization of the information is a desirable goal. Our system allows the automatic generation of visualizations given the semantics of the data, and the static or pre-specified visualization by creating an interface language. We address information visualization taking into consideration the Web, where the presentation of the retrieved information is a challenge. ^ We provide a model to narrow the gap between the user's way of expressing queries and database manipulation languages (SQL) without changing the system itself thus improving the query specification process. We develop a Web interface model that is integrated with the HTML language to create a powerful language that facilitates the construction of Web-based database reports. ^ As opposed to other papers, this model offers a new way of exploring databases focusing on providing Web connectivity to databases with minimal or no result buffering, formatting, or extra programming. We describe how to easily connect the database to the Web. In addition, we offer an enhanced way on viewing and exploring the contents of a database, allowing users to customize their views depending on the contents and the structure of the data. Current database front-ends typically attempt to display the database objects in a flat view making it difficult for users to grasp the contents and the structure of their result. Our model narrows the gap between databases and the Web. ^ The overall objective of this research is to construct a model that accesses different databases easily across the net and generates SQL, forms, and reports across all platforms without requiring the developer to code a complex application. This increases the speed of development. In addition, using only the Web browsers, the end-user can retrieve data from databases remotely to make necessary modifications and manipulations of data using the Web formatted forms and reports, independent of the platform, without having to open different applications, or learn to use anything but their Web browser. We introduce a strategic method to generate and construct SQL queries, enabling inexperienced users that are not well exposed to the SQL world to build syntactically and semantically a valid SQL query and to understand the retrieved data. The generated SQL query will be validated against the database schema to ensure harmless and efficient SQL execution. (Abstract shortened by UMI.)^
Resumo:
The rapid growth of the Internet and the advancements of the Web technologies have made it possible for users to have access to large amounts of on-line music data, including music acoustic signals, lyrics, style/mood labels, and user-assigned tags. The progress has made music listening more fun, but has raised an issue of how to organize this data, and more generally, how computer programs can assist users in their music experience. An important subject in computer-aided music listening is music retrieval, i.e., the issue of efficiently helping users in locating the music they are looking for. Traditionally, songs were organized in a hierarchical structure such as genre->artist->album->track, to facilitate the users’ navigation. However, the intentions of the users are often hard to be captured in such a simply organized structure. The users may want to listen to music of a particular mood, style or topic; and/or any songs similar to some given music samples. This motivated us to work on user-centric music retrieval system to improve users’ satisfaction with the system. The traditional music information retrieval research was mainly concerned with classification, clustering, identification, and similarity search of acoustic data of music by way of feature extraction algorithms and machine learning techniques. More recently the music information retrieval research has focused on utilizing other types of data, such as lyrics, user-access patterns, and user-defined tags, and on targeting non-genre categories for classification, such as mood labels and styles. This dissertation focused on investigating and developing effective data mining techniques for (1) organizing and annotating music data with styles, moods and user-assigned tags; (2) performing effective analysis of music data with features from diverse information sources; and (3) recommending music songs to the users utilizing both content features and user access patterns.