904 resultados para WIRE
Resumo:
The present status and future prospects of functional information materials, mainly focusing on semiconductor microstructural materials, are introduced first in this paper. Then a brief discussion how to enhance the academic level and innovation capability of research and development of functional information materials in China are made. Finally the main problems concerning the studies of materials science and technology are analyzed, and possible measures for promoting its development are proposed.
Resumo:
A new framework of non-local model for the strain energy density is proposed in this paper. The global strain energy density of the representative volume element is treated as a non-local variable and can be obtained through a special integral of the local strain energy density. The local strain energy density is assumed to be dependent on both the strain and the rotation-gradient. As a result of the non-local model, a new strain gradient theory is derived directly, in which the first and second strain gradients, as well as the triadic and tetradic stress, are introduced in the context of work conjugate. For power law hardening materials, size effects in thin metallic wire torsion and ultra-thin cantilever beam bend are investigated. It is found that the result predicted by the theoretical model is well consistent with the experimental data for the thin wire torsion. On the other hand, the calculation result for the micro-cantilever beam bend clearly shows the size effect.
Resumo:
Surface plasmon resonances of arrays of parallel copper nanowires, embedded in ion track-etched polycarbonate membranes, were investigated by systematic changes of nanowires’ topology and arrays area density. The extinction spectra exhibit two peaks which are attributed to interband transitions of Cu bulk metal and to a dipolar surface plasmon resonance, respectively. The resonances were investigated as a function of wire diameter and length, mean distance between adjacent wires, and angle of incidence of the light field with respect to the long wire axis. The dipolar peak shifts to larger wavelengths with increasing diameter and length, and diminishing mean distance between adjacent wires. Additionally, the shape effect on the dipolar peak is investigated.
Resumo:
简要介绍了1-Wire总线协议的原理和数字温度传感器DS18B20以及超低功耗16位混合信号处理器MSP430F149的基本特性,结合上位机PC组成了一个多分支多通道精密温度测量系统。并给出实现多分支多通道温度测量的软件流程图以及测量结果的简要分析。整个系统结构简单,抗干扰能力强,性能稳定,测温精度达到0.0625℃,单处理器芯片可以实现40个测量点的数据采集。
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.
Resumo:
A 3 T superconducting magnet with a 70 mm diameter warm bore and energy storage of 47 kJ has been successfully fabricated and tested, which can be used to calibrate Hall sensors in high magnetic field as well as conduct superconducting experiments. The magnet consists of three solenoid coils and an iron yoke. The homogeneity of the magnetic field in the region of interest (ROI) is +/- 6.0 x 10(-5). The coils of the magnet were fabricated with NbTi-Cu superconducting wire and the stray magnetic field is shielded by an iron yoke. The coils and yoke are fully immersed in a helium vessel. The optimized structural design, stress and quench simulation, fabrication and test results are presented in this paper.
Resumo:
兰州重离子加速器(HIRFL)是一个等时性回旋加速系统,它包括一台能量常数K=69的扇聚焦回旋加速器(SFC)和一台K=450的分离扇回旋加速器(SSC)。加速器的束流诊断对加速器的运行而言是必不可少的,为加速器的调束提供直接的依据,在束流参数调整、运行状态监测和优化束流品质方面发挥着重要作用。 本论文主要描述了双丝束流剖面监测器的研制,对其各组成部分、设计和测试都做了详细的介绍。双丝束流剖面监测器使用钨丝作为探针,当带电粒子打到钨丝上,与钨丝中的电子作用使之激发并发射,即产生二次电子。通过把这一过程中形成的电流转化为电压量进行数据采集,便可以得到在钨丝移动方向上的一维束流强度分布。其中,钨丝的移动由运动控制系统来实现。双丝束流剖面监测器只使用了两根钨丝,在测量过程中对束流分布产生的破坏很小,因而属于非拦截式的束流诊断元件。 双丝束流剖面监测器已经在HIRFL前束运线上进行了测试,它能够在较短时间内测量出束流的剖面,结果较好,达到了预期的要求。 由于双丝束流剖面监测器的非拦截性,而且具有使用灵活、测量准确等优点,它必将成为束流诊断中的一个有力的工具
Resumo:
In the experiment of nuclear reaction, it is important to measure the mass, charge, energy and emitted direction of particles. For multiparameter measurement, we must use a detector or a group of detectors which can give the time, energy, and position information. The Large Area position sensitive Ionization Chamber(LAIC) is one of the eight experiment terminals of HIRFL. It is built for researching nuclear reactions from low energy to intermediate energy. It is an excellent equipment for energy measurements and atomic number identification of emitted fragments in this energy region. It is also designed to give the time and position information of the emitted fragments by itself. Obviously, an IC can not supply a good timing signal. Moreover, the mechanical installation is different from the original design by some other reasons. In this case, it is not enough to obtain the correct direction information of the emitted fragments. To obtain good timing signals and the correct direction information, some modifications must be made. It is well known that a PPAC can give us excellent timing signals. It also can be easily built as a position sensitive detector. For this reason, a specially designed PPAC is installed in the entrance of the LAIC. For the different purposes, two types of PPACs were designed and tested. Both are OCTPSACs (OCTunit one dimension Position Sensitive Avalanche Counter). In this paper, both OCTPSACs will be introduced. Based on the requirements of the LAIC, the OCTPSACs consist of eight position sensitive PPACs. Each PPAC has an anode and a cathode. In both cases, the sizes are same. But different type of cathodes are used. In one type of OCTPSAC, its cathode is made of wire plane. It consists of gold-plated tungsten wires with the diameter of 20μm, spaced 0.5 mm apart from each other. The anode is a mylar foil which was evaporated by gold layer with the thickness of 50μg/cm~2 mounted on a printed plate in the shape of rectangle. the thickness of mylar foil is 1.5μm. The gap between anode and cathode is 3mm. The performance of the OCTPSAC has been tested by using a ~(252)Cf source in flowing isobutylene gas at the pressure of 3.4mb. The intrinsic time resolution of 289ps and position resolution of 2 mm have been obtained. In another type of OCTPSAC, the cathode is made of mylar foil, which is composed of gold strip by vacuume evaporation method with a special mask on the mylar foil. The thickness and the width of the gold strip is 50μg/cm~2 and 1.7mm. The strips are spaced 0.3 mm apart from each other. The anode is the same as the former type. We have obtained the time resolution of 296ps and position resolution of 2mm by using ~(241)Am-a source when the gas pressure is 6 mb and high voltage is 600V. The working gas is heptane
Resumo:
本文以高密度聚乙烯(HDPE)为基料研制出电子辐照耐高温阻燃电线电缆绝缘材料,并对HDPE的辐射交联机制进行了讨论,辐射交联不仅发生在无定形区,结晶区对交联有贡献.对抗氧剂、敏化剂、炭黑、阻燃剂等对材料交联性质的影响做了一些试验,总结出一些规律,尤其对敏化剂在HDPE交联中的作用做了合理的阐述.阻燃剂对材料耐温等级提高很大,而且辐射交联后氧指数有所提高, 研究了HDPE与乙烯一醋酸共聚物(EVA)共混辐照后的一些性 质,EVA对HDPE的改性的有利与不利之处,还进一步探讨了用三元乙丙橡胶(EPDM),硅橡胶、氟材料来提高体系耐温等级和其它性能的办法. 耐高温皿燃线缆材料具有非常广泛的用途,它的耐温等级为135℃,氧指数可达30以上.该成果具有非常广泛的用途,填补了国内空白,为辐射加工产业化做出一定贡献.
Resumo:
The dependence of electron conduction of oligo(1,4-phenylene ethynylene)s (OPEs) on length, terminal group, and main chain structure was examined by conductive probe-atomic force microscopy (CP-AFM) via a metal substrate-molecular wire monolayer-conductive probe junction. The electron transport in the molecular junction was a highest occupied molecule orbital (HOMO)-mediated process following a coherent, non-resonant tunneling mechanism represented by the Simmons equation.
Resumo:
A ruthenium(II) bis(sigma-arylacetylide)-complex-based molecular wire functionalized with thiolacetyl alligator clips at both ends (OPERu) was used to fabricate gold substrate-molecular wire-conductive tip junctions. To elucidate the ruthenium-complex-enhanced charge transport, we conducted a single-molecule level investigation using the technique-combination method, where electronic delay constant, single-molecular conductance, and barrier height were obtained by scanning tunneling microscopy (STM) apparent height measurements, STM break junction measurements, and conductive probe-atomic force microscopy (CP-AFM) measurements, respectively.
Resumo:
The quinacridone derivatives N,N'-dialkyl-1,3,8,10-tetramethylquinacridone (CnTMQA, n = 6, 10, 14) were used as building blocks to assemble luminescent nano- and microscale wires. It was demonstrated that CnTMQA with different lengths of alkyl chains display obviously different wire formation properties. C10TMQA and C14TMQA showed a stronger tendency to form 1-D nano- and microstructures compared with C6TMQA. The C10TMQA molecules could be employed to fabricate the wires with different diameters, which exhibited a size-dependent luminescence property. The emission spectrum of the C10TMQA wires with diameters of 200-500 nm shows a broad emission band at 560 nm and a shoulder at around 535 nm, while the emission spectrum of the C10TMQA wires with diameters of 2-3 mu m reveals a narrower emission band at 563 nm. For the CnTMQA-based samples with different morphologies, the emission property change tendency agrees with that of the powder X-ray diffraction patterns of these samples.
Resumo:
A new setup to couple capillary electrophoresis (CE) with electrochemiluminescence (ECL) detection is described in which the electrical connection of CE is achieved through a porous section at a distance of 7 mm from the CE capillary outlet. Because the porous capillary wall allowed the CE current to pass through and there was no electric field gradient beyond that section, the influence of CE high-voltage field on the ECL procedure was eliminated. The porous section formed by etching the capillary with hydrofluoric acid after only one side of the circumference of 2-3 mm of polyimide coating of the capillary was removed, while keeping the polyimide coating on the other part to protect the capillary from HF etching makes the capillary joint much more robust since only a part of the circumference of it is etched. A standard three-electrode configuration was used in experiments with Pt wire as a counter electrode, Ag/AgCl as a reference electrode, and a 300-mum diameter Pt disk as a working electrode. Compared with CE-ECL conventional decoupler designs, the present setup with a porous joint has no added dead volume created.
Resumo:
The design and performance of a miniaturized chip-type tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] electrochemiluminescence (ECL) detection cell suitable for both capillary electrophoresis (CE) and flow injection (FI) analysis are described. The cell was fabricated from two pieces of glass (20 x 15 x 1.7 mm), and the 0.5-mm-diameter platinum disk was used as working electrode held at +1.15 V (vs silver wire quasi-reference), the stainless steel guide tubing as counter electrode, and the silver wire as quasi-reference electrode. The performance traits of the cell in both CE and FI modes were evaluated using tripropylamine, proline, and oxalate and compared favorably to those reported for CE and FI detection cells. The advantages of versatility, sensitivity, and accuracy make the device attractive for the routine analysis of amine-containing species or oxalate by CE and FI with Ru(bPY)(3)(2divided by) ECL detection.