919 resultados para Visualization Using Computer Algebra Tools
Resumo:
The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.
Resumo:
Résumé Cette thèse est consacrée à l'analyse, la modélisation et la visualisation de données environnementales à référence spatiale à l'aide d'algorithmes d'apprentissage automatique (Machine Learning). L'apprentissage automatique peut être considéré au sens large comme une sous-catégorie de l'intelligence artificielle qui concerne particulièrement le développement de techniques et d'algorithmes permettant à une machine d'apprendre à partir de données. Dans cette thèse, les algorithmes d'apprentissage automatique sont adaptés pour être appliqués à des données environnementales et à la prédiction spatiale. Pourquoi l'apprentissage automatique ? Parce que la majorité des algorithmes d'apprentissage automatiques sont universels, adaptatifs, non-linéaires, robustes et efficaces pour la modélisation. Ils peuvent résoudre des problèmes de classification, de régression et de modélisation de densité de probabilités dans des espaces à haute dimension, composés de variables informatives spatialisées (« géo-features ») en plus des coordonnées géographiques. De plus, ils sont idéaux pour être implémentés en tant qu'outils d'aide à la décision pour des questions environnementales allant de la reconnaissance de pattern à la modélisation et la prédiction en passant par la cartographie automatique. Leur efficacité est comparable au modèles géostatistiques dans l'espace des coordonnées géographiques, mais ils sont indispensables pour des données à hautes dimensions incluant des géo-features. Les algorithmes d'apprentissage automatique les plus importants et les plus populaires sont présentés théoriquement et implémentés sous forme de logiciels pour les sciences environnementales. Les principaux algorithmes décrits sont le Perceptron multicouches (MultiLayer Perceptron, MLP) - l'algorithme le plus connu dans l'intelligence artificielle, le réseau de neurones de régression généralisée (General Regression Neural Networks, GRNN), le réseau de neurones probabiliste (Probabilistic Neural Networks, PNN), les cartes auto-organisées (SelfOrganized Maps, SOM), les modèles à mixture Gaussiennes (Gaussian Mixture Models, GMM), les réseaux à fonctions de base radiales (Radial Basis Functions Networks, RBF) et les réseaux à mixture de densité (Mixture Density Networks, MDN). Cette gamme d'algorithmes permet de couvrir des tâches variées telle que la classification, la régression ou l'estimation de densité de probabilité. L'analyse exploratoire des données (Exploratory Data Analysis, EDA) est le premier pas de toute analyse de données. Dans cette thèse les concepts d'analyse exploratoire de données spatiales (Exploratory Spatial Data Analysis, ESDA) sont traités selon l'approche traditionnelle de la géostatistique avec la variographie expérimentale et selon les principes de l'apprentissage automatique. La variographie expérimentale, qui étudie les relations entre pairs de points, est un outil de base pour l'analyse géostatistique de corrélations spatiales anisotropiques qui permet de détecter la présence de patterns spatiaux descriptible par une statistique. L'approche de l'apprentissage automatique pour l'ESDA est présentée à travers l'application de la méthode des k plus proches voisins qui est très simple et possède d'excellentes qualités d'interprétation et de visualisation. Une part importante de la thèse traite de sujets d'actualité comme la cartographie automatique de données spatiales. Le réseau de neurones de régression généralisée est proposé pour résoudre cette tâche efficacement. Les performances du GRNN sont démontrées par des données de Comparaison d'Interpolation Spatiale (SIC) de 2004 pour lesquelles le GRNN bat significativement toutes les autres méthodes, particulièrement lors de situations d'urgence. La thèse est composée de quatre chapitres : théorie, applications, outils logiciels et des exemples guidés. Une partie importante du travail consiste en une collection de logiciels : Machine Learning Office. Cette collection de logiciels a été développée durant les 15 dernières années et a été utilisée pour l'enseignement de nombreux cours, dont des workshops internationaux en Chine, France, Italie, Irlande et Suisse ainsi que dans des projets de recherche fondamentaux et appliqués. Les cas d'études considérés couvrent un vaste spectre de problèmes géoenvironnementaux réels à basse et haute dimensionnalité, tels que la pollution de l'air, du sol et de l'eau par des produits radioactifs et des métaux lourds, la classification de types de sols et d'unités hydrogéologiques, la cartographie des incertitudes pour l'aide à la décision et l'estimation de risques naturels (glissements de terrain, avalanches). Des outils complémentaires pour l'analyse exploratoire des données et la visualisation ont également été développés en prenant soin de créer une interface conviviale et facile à l'utilisation. Machine Learning for geospatial data: algorithms, software tools and case studies Abstract The thesis is devoted to the analysis, modeling and visualisation of spatial environmental data using machine learning algorithms. In a broad sense machine learning can be considered as a subfield of artificial intelligence. It mainly concerns with the development of techniques and algorithms that allow computers to learn from data. In this thesis machine learning algorithms are adapted to learn from spatial environmental data and to make spatial predictions. Why machine learning? In few words most of machine learning algorithms are universal, adaptive, nonlinear, robust and efficient modeling tools. They can find solutions for the classification, regression, and probability density modeling problems in high-dimensional geo-feature spaces, composed of geographical space and additional relevant spatially referenced features. They are well-suited to be implemented as predictive engines in decision support systems, for the purposes of environmental data mining including pattern recognition, modeling and predictions as well as automatic data mapping. They have competitive efficiency to the geostatistical models in low dimensional geographical spaces but are indispensable in high-dimensional geo-feature spaces. The most important and popular machine learning algorithms and models interesting for geo- and environmental sciences are presented in details: from theoretical description of the concepts to the software implementation. The main algorithms and models considered are the following: multi-layer perceptron (a workhorse of machine learning), general regression neural networks, probabilistic neural networks, self-organising (Kohonen) maps, Gaussian mixture models, radial basis functions networks, mixture density networks. This set of models covers machine learning tasks such as classification, regression, and density estimation. Exploratory data analysis (EDA) is initial and very important part of data analysis. In this thesis the concepts of exploratory spatial data analysis (ESDA) is considered using both traditional geostatistical approach such as_experimental variography and machine learning. Experimental variography is a basic tool for geostatistical analysis of anisotropic spatial correlations which helps to understand the presence of spatial patterns, at least described by two-point statistics. A machine learning approach for ESDA is presented by applying the k-nearest neighbors (k-NN) method which is simple and has very good interpretation and visualization properties. Important part of the thesis deals with a hot topic of nowadays, namely, an automatic mapping of geospatial data. General regression neural networks (GRNN) is proposed as efficient model to solve this task. Performance of the GRNN model is demonstrated on Spatial Interpolation Comparison (SIC) 2004 data where GRNN model significantly outperformed all other approaches, especially in case of emergency conditions. The thesis consists of four chapters and has the following structure: theory, applications, software tools, and how-to-do-it examples. An important part of the work is a collection of software tools - Machine Learning Office. Machine Learning Office tools were developed during last 15 years and was used both for many teaching courses, including international workshops in China, France, Italy, Ireland, Switzerland and for realizing fundamental and applied research projects. Case studies considered cover wide spectrum of the real-life low and high-dimensional geo- and environmental problems, such as air, soil and water pollution by radionuclides and heavy metals, soil types and hydro-geological units classification, decision-oriented mapping with uncertainties, natural hazards (landslides, avalanches) assessments and susceptibility mapping. Complementary tools useful for the exploratory data analysis and visualisation were developed as well. The software is user friendly and easy to use.
Resumo:
PURPOSE: To evaluate gadocoletic acid (B-22956), a gadolinium-based paramagnetic blood pool agent, for contrast-enhanced coronary magnetic resonance angiography (MRA) in a Phase I clinical trial, and to compare the findings with those obtained using a standard noncontrast T2 preparation sequence. MATERIALS AND METHODS: The left coronary system was imaged in 12 healthy volunteers before B-22956 application and 5 (N = 11) and 45 (N = 7) minutes after application of 0.075 mmol/kg of body weight (BW) of B-22956. Additionally, imaging of the right coronary system was performed 23 minutes after B-22956 application (N = 6). A three-dimensional gradient echo sequence with T2 preparation (precontrast) or inversion recovery (IR) pulse (postcontrast) with real-time navigator correction was used. Assessment of the left and right coronary systems was performed qualitatively (a 4-point visual score for image quality) and quantitatively in terms of signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), vessel sharpness, visible vessel length, maximal luminal diameter, and the number of visible side branches. RESULTS: Significant (P < 0.01) increases in SNR (+42%) and CNR (+86%) were noted five minutes after B-22956 application, compared to precontrast T2 preparation values. A significant increase in CNR (+40%, P < 0.05) was also noted 45 minutes postcontrast. Vessels (left anterior descending artery (LAD), left coronary circumflex (LCx), and right coronary artery (RCA)) were also significantly (P < 0.05) sharper on postcontrast images. Significant increases in vessel length were noted for the LAD (P < 0.05) and LCx and RCA (both P < 0.01), while significantly more side branches were noted for the LAD and RCA (both P < 0.05) when compared to precontrast T2 preparation values. CONCLUSION: The use of the intravascular contrast agent B-22956 substantially improves both objective and subjective parameters of image quality on high-resolution three-dimensional coronary MRA. The increase in SNR, CNR, and vessel sharpness minimizes current limitations of coronary artery visualization with high-resolution coronary MRA.
Resumo:
Peer reviewed
Resumo:
Tämä diplomityö käsittelee työkaluja, jotka on suunniteltu kustannusten ennakointiin ja hinnan asetantaan. Aluksi on käyty läpi perinteisen ja toimintoperusteisen kustannuslaskennan perusteita. Näiden menetelmien välisiä eroja on tarkasteltu ja toimintoperusteisen kustannuslaskennan paremmin sopivuus nykypäivän yrityksille on perusteltu. Toisena käsitellään hinnoittelu. Hinnan merkitys, hinnoittelumenetelmät ja päätös lopullisesta hinnasta on käyty läpi. Hinnoittelun jälkeen esitellään kustannusjärjestelmät ja kustannusten arviointi. Nämä asiat todistavat, että tarkat kustannusarviot ovat elintärkeitä yritykselle. Tuotteen kustannusarviointi, hinnan asetanta ja tarjoaminen ovat erittäin merkityksellisiä asioita ottaen huomioon koko projektin elinkaaren ja tulevat tuotot. Nykyään on yleistä käyttää työkaluja kustannusarvioinnissa ja joskus myös hinnoittelussa. Työkalujen luotettavuus on tiedettävä, ennenkuin työkalut otetaan käyttöön. Myös työkalujen käyttäjät täytyy perehdyttää hyvin. Muuten yritys todennäköisesti kohtaa odottamattomia ja epämiellyttäviä yllätyksiä.
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs.
Resumo:
Background: The repertoire of statistical methods dealing with the descriptive analysis of the burden of a disease has been expanded and implemented in statistical software packages during the last years. The purpose of this paper is to present a web-based tool, REGSTATTOOLS http://regstattools.net intended to provide analysis for the burden of cancer, or other group of disease registry data. Three software applications are included in REGSTATTOOLS: SART (analysis of disease"s rates and its time trends), RiskDiff (analysis of percent changes in the rates due to demographic factors and risk of developing or dying from a disease) and WAERS (relative survival analysis). Results: We show a real-data application through the assessment of the burden of tobacco-related cancer incidence in two Spanish regions in the period 1995-2004. Making use of SART we show that lung cancer is the most common cancer among those cancers, with rising trends in incidence among women. We compared 2000-2004 data with that of 1995-1999 to assess percent changes in the number of cases as well as relative survival using RiskDiff and WAERS, respectively. We show that the net change increase in lung cancer cases among women was mainly attributable to an increased risk of developing lung cancer, whereas in men it is attributable to the increase in population size. Among men, lung cancer relative survival was higher in 2000-2004 than in 1995-1999, whereas it was similar among women when these time periods were compared. Conclusions: Unlike other similar applications, REGSTATTOOLS does not require local software installation and it is simple to use, fast and easy to interpret. It is a set of web-based statistical tools intended for automated calculation of population indicators that any professional in health or social sciences may require.
Resumo:
In recent years, Business Model Canvas design has evolved from being a paper-based activity to one that involves the use of dedicated computer-aided business model design tools. We propose a set of guidelines to help design more coherent business models. When combined with functionalities offered by CAD tools, they show great potential to improve business model design as an ongoing activity. However, in order to create complex solutions, it is necessary to compare basic business model design tasks, using a CAD system over its paper-based counterpart. To this end, we carried out an experiment to measure user perceptions of both solutions. Performance was evaluated by applying our guidelines to both solutions and then carrying out a comparison of business model designs. Although CAD did not outperform paper-based design, the results are very encouraging for the future of computer-aided business model design.
Resumo:
The computer simulation of reaction dynamics has nowadays reached a remarkable degree of accuracy. Triatomic elementary reactions are rigorously studied with great detail on a straightforward basis using a considerable variety of Quantum Dynamics computational tools available to the scientific community. In our contribution we compare the performance of two quantum scattering codes in the computation of reaction cross sections of a triatomic benchmark reaction such as the gas phase reaction Ne + H2+ %12. NeH++ H. The computational codes are selected as representative of time-dependent (Real Wave Packet [ ]) and time-independent (ABC [ ]) methodologies. The main conclusion to be drawn from our study is that both strategies are, to a great extent, not competing but rather complementary. While time-dependent calculations advantages with respect to the energy range that can be covered in a single simulation, time-independent approaches offer much more detailed information from each single energy calculation. Further details such as the calculation of reactivity at very low collision energies or the computational effort related to account for the Coriolis couplings are analyzed in this paper.
Resumo:
Objective: We propose and validate a computer aided system to measure three different mandibular indexes: cortical width, panoramic mandibular index and, mandibular alveolar bone resorption index. Study Design: Repeatability and reproducibility of the measurements are analyzed and compared to the manual estimation of the same indexes. Results: The proposed computerized system exhibits superior repeatability and reproducibility rates compared to standard manual methods. Moreover, the time required to perform the measurements using the proposed method is negligible compared to perform the measurements manually. Conclusions: We have proposed a very user friendly computerized method to measure three different morphometric mandibular indexes. From the results we can conclude that the system provides a practical manner to perform these measurements. It does not require an expert examiner and does not take more than 16 seconds per analysis. Thus, it may be suitable to diagnose osteoporosis using dental panoramic radiographs
Resumo:
This study compares the impact of quality management tools on the performance of organisations utilising the ISO 9001:2000 standard as a basis for a quality-management system band those utilising the EFQM model for this purpose. A survey is conducted among 107 experienced and independent quality-management assessors. The study finds that organisations with qualitymanagement systems based on the ISO 9001:2000 standard tend to use general-purpose qualitative tools, and that these do have a relatively positive impact on their general performance. In contrast, organisations adopting the EFQM model tend to use more specialised quantitative tools, which produce significant improvements in specific aspects of their performance. The findings of the study will enable organisations to choose the most effective quality-improvement tools for their particular quality strategy
Resumo:
This thesis introduces a real-time simulation environment based on the multibody simulation approach. The environment consists of components that are used in conventional product development, including computer aided drawing, visualization, dynamic simulation and finite element software architecture, data transfer and haptics. These components are combined to perform as a coupled system on one platform. The environment is used to simulate mobile and industrial machines at different stages of a product life time. Consequently, the demands of the simulated scenarios vary. In this thesis, a real-time simulation environment based on the multibody approach is used to study a reel mechanism of a paper machine and a gantry crane. These case systems are used to demonstrate the usability of the real-time simulation environment for fault detection purposes and in the context of a training simulator. In order to describe the dynamical performance of a mobile or industrial machine, the nonlinear equations of motion must be defined. In this thesis, the dynamical behaviour of machines is modelled using the multibody simulation approach. A multibody system may consist of rigid and flexible bodies which are joined using kinematic joint constraints while force components are used to describe the actuators. The strength of multibody dynamics relies upon its ability to describe nonlinearities arising from wearing of the components, friction, large rotations or contact forces in a systematic manner. For this reason, the interfaces between subsystems such as mechanics, hydraulics and control systems of the mechatronic machine can be defined and analyzed in a straightforward manner.
Resumo:
The simulation programs are important tools to analyze the different energetic alternatives, including the use of renewable energy. The objective of this study was to analyze comparatively the different computer tools available for modeling of solar water heaters. Among the main simulation software of solar thermal systems, there are: RETScreen International, EnergyPlus, TRNSYS, SolDesigner, SolarPro, e T*SOL. Among the tools mentioned, only EnergyPlus and RETScreen International are free, but they allow obtaining interesting results when applied together. The first one has a detailed module of energy analysis of solar water heaters, while the second one provides an detailed economic feasibility study and an assessment of emissions of greenhouse gases. RETScreen International and EnergyPlus programs are aimed at a diverse audience, including designers, researchers and energy planners.
Resumo:
Drug discovery is a continuous process where researchers are constantly trying to find new and better drugs for the treatment of various conditions. Alzheimer’s disease, a neurodegenerative disease mostly affecting the elderly, has a complex etiology with several possible drug targets. Some of these targets have been known for years while other new targets and theories have emerged more recently. Cholinesterase inhibitors are the major class of drugs currently used for the symptomatic treatment of Alzheimer’s disease. In the Alzheimer’s disease brain there is a deficit of acetylcholine and an impairment in signal transmission. Acetylcholinesterase has therefore been the main target as this is the main enzyme hydrolysing acetylcholine and ending neurotransmission. It is believed that by inhibiting acetylcholinesterase the cholinergic signalling can be enhanced and the cognitive symptoms that arise in Alzheimer’s disease can be improved. Butyrylcholinesterase, the second enzyme of the cholinesterase family, has more recently attracted interest among researchers. Its function is still not fully known, but it is believed to play a role in several diseases, one of them being Alzheimer’s disease. In this contribution the aim has primarily been to identify butyrylcholinesterase inhibitors to be used as drug molecules or molecular probes in the future. Both synthetic and natural compounds in diverse and targeted screening libraries have been used for this purpose. The active compounds have been further characterized regarding their potencies, cytotoxicity, and furthermore, in two of the publications, the inhibitors ability to also inhibit Aβ aggregation in an attempt to discover bifunctional compounds. Further, in silico methods were used to evaluate the binding position of the active compounds with the enzyme targets. Mostly to differentiate between the selectivity towards acetylcholinesterase and butyrylcholinesterase, but also to assess the structural features required for enzyme inhibition. We also evaluated the compounds, active and non-active, in chemical space using the web-based tool ChemGPS-NP to try and determine the relevant chemical space occupied by cholinesterase inhibitors. In this study, we have succeeded in finding potent butyrylcholinesterase inhibitors with a diverse set of structures, nine chemical classes in total. In addition, some of the compounds are bifunctional as they also inhibit Aβ aggregation. The data gathered from all publications regarding the chemical space occupied by butyrylcholinesterase inhibitors we believe will give an insight into the chemically active space occupied by this type of inhibitors and will hopefully facilitate future screening and result in an even deeper knowledge of butyrylcholinesterase inhibitors.