948 resultados para Teleonomic Entropy


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Guided self-organization can be regarded as a paradigm proposed to understand how to guide a self-organizing system towards desirable behaviors, while maintaining its non-deterministic dynamics with emergent features. It is, however, not a trivial problem to guide the self-organizing behavior of physically embodied systems like robots, as the behavioral dynamics are results of interactions among their controller, mechanical dynamics of the body, and the environment. This paper presents a guided self-organization approach for dynamic robots based on a coupling between the system mechanical dynamics with an internal control structure known as the attractor selection mechanism. The mechanism enables the robot to gracefully shift between random and deterministic behaviors, represented by a number of attractors, depending on internally generated stochastic perturbation and sensory input. The robot used in this paper is a simulated curved beam hopping robot: a system with a variety of mechanical dynamics which depends on its actuation frequencies. Despite the simplicity of the approach, it will be shown how the approach regulates the probability of the robot to reach a goal through the interplay among the sensory input, the level of inherent stochastic perturbation, i.e., noise, and the mechanical dynamics. © 2014 by the authors; licensee MDPI, Basel, Switzerland.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A giant magnetocaloric effect was found in series of Mn1-xCoxAs films epitaxied on GaAs (001). The maximum magnetic entropy change caused by a magnetic field of 4 T is as large as 25 J/kg K around room temperature, which is about twice the value of pure MnAs film. The observed small thermal hysteresis is more suitable for practical application. Growing of layered Mn1-xCoxAs films with Co concentration changing gradually may draw layered active magnetic regenerator refrigerators closer to practical application. Our experimental result may provide the possibility for the combination of magnetocaloric effect and microelectronic circuitry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study the effects of the Dzyaloshinski-Moriya (DM) anisotropic interaction on the ground-state properties of the Heisenberg XY spin chain by means of the fidelity susceptibility, order parameter, and entanglement entropy. Our results show that the DM interaction could influence the distribution of the regions of quantum phase transitions and cause different critical regions in the XY spin model. Meanwhile, the DM interaction has effective influence on the degree of entanglement of the system and could be used to increase the entanglement of the spin system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

First, the compression-awaited data are regarded Lis character strings which are produced by virtual information source mapping M. then the model of the virtual information source M is established by neural network and SVM. Last we construct a lossless data compression (coding) scheme based oil neural network and SVM with the model, an integer function and a SVM discriminant. The scheme differs from the old entropy coding (compressions) inwardly, and it can compress some data compressed by the old entropy coding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

目前,存在众多的随机性检测项目,并且许多项目都带有参数.选择所有的项目进行检测不现实,因此需要研究检测项目之间的关系.从统计学角度出发,对检测项目的相关性进行研究,首先定义了检测项目之间存在的4种关系,提出了检测项目相关度的概念,然后利用熵值法对检测项目相关度进行度量,并证明了这4种关系与相关度的联系,同时给出了一种计算相关度的算法和一个基于相关度的检测项目选择策略.所研究的结果为随机性检测项目及其参数选择提供了理论依据.与此同时,利用相关度对NIST在评选AES中所采用的检测项目进行研究,发现了其中一些检测项目之间存在着依赖关系.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chaotic behavior of closed loop pulsating heat pipes (PHPs) was studied. The PHPs were fabricated by capillary tubes with outer and inner diameters of 2.0 and 1.20 mm. FC-72 and deionized water were used as the working fluids. Experiments cover the following data ranges: number of turns of 4, 6, and 9, inclination angles from 5 degrees (near horizontal) to 90, (vertical), charge ratios from 50% to 80%, heating powers from 7.5 to 60.0 W. The nonlinear analysis is based on the recorded time series of temperatures on the evaporation, adiabatic, and condensation sections. The present study confirms that PHPs are deterministic chaotic systems. Autocorrelation functions (ACF) are decreased versus time, indicating prediction ability of the system is finite. Three typical attractor patterns are identified. Hurst exponents are very high, i.e., from 0.85 to 0.95, indicating very strong persistent properties of PHPs. Curves of correlation integral versus radius of hypersphere indicate two linear sections for water PHPs, corresponding to both high frequency, low amplitude, and low frequency, large amplitude oscillations. At small inclination angles near horizontal, correlation dimensions are not uniform at different turns of PHPs. The non-uniformity of correlation dimensions is significantly improved with increases in inclination angles. Effect of inclination angles on the chaotic parameters is complex for FC-72 PHPs, but it is certain that correlation dimensions and Kolmogorov entropies are increased with increases in inclination angles. The optimal charge ratios are about 60-70%, at which correlation dimensions and Kolmogorov entropies are high. The higher the heating power, the larger the correlation dimensions and Kolmogorov entropies are. For most runs, large correlation dimensions and Kolmogorov entropies correspond to small thermal resistances, i.e., better thermal performance, except for FC-72 PHPs at small inclination angles of theta < 15 degrees.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multi-frame image super-resolution (SR) aims to utilize information from a set of low-resolution (LR) images to compose a high-resolution (HR) one. As it is desirable or essential in many real applications, recent years have witnessed the growing interest in the problem of multi-frame SR reconstruction. This set of algorithms commonly utilizes a linear observation model to construct the relationship between the recorded LR images to the unknown reconstructed HR image estimates. Recently, regularization-based schemes have been demonstrated to be effective because SR reconstruction is actually an ill-posed problem. Working within this promising framework, this paper first proposes two new regularization items, termed as locally adaptive bilateral total variation and consistency of gradients, to keep edges and flat regions, which are implicitly described in LR images, sharp and smooth, respectively. Thereafter, the combination of the proposed regularization items is superior to existing regularization items because it considers both edges and flat regions while existing ones consider only edges. Thorough experimental results show the effectiveness of the new algorithm for SR reconstruction. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study dynamical properties of quantum entanglement in the Dicke model with and without the rotating-wave approximation. Specifically, we investigate the maximal entanglement and mean entanglement which reflect the underlying chaos in the system, and a good classical-quantum correspondence is found. We also show that the maximal linear entropy can be more sensitive to chaos than the mean linear entropy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In f ( R) gravity and scalar-tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Motivated by the recently proposed Kerr/CFT correspondence, we investigate the holographic dual of the extremal and non-extremal rotating linear dilaton black hole in Einstein-Maxwell-Dilaton-Axion Gravity. For the case of extremal black hole, by imposing the appropriate boundary condition at spatial infinity of the near horizon extremal geometry, the Virasoro algebra of conserved charges associated with the asymptotic symmetry group is obtained. It is shown that the microscopic entropy of the dual conformal field given by Cardy formula exactly agrees with Bekenstein-Hawking entropy of extremal black hole. Then, by rewriting the wave equation of massless scalar field with sufficient low energy as the SLL(2, R) x SLR(2, R) Casimir operator, we find the hidden conformal symmetry of the non-extremal linear dilaton black hole, which implies that the non-extremal rotating linear dilaton black hole is holographically dual to a two dimensional conformal field theory with the non-zero left and right temperatures. Furthermore, it is shown that the entropy of non-extremal black hole can be reproduced by using Cardy formula.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Intense heavy ion beams offer a unique tool for generating samples of high energy density matter with extreme conditions of density and pressure that are believed to exist in the interiors of giant planets. An international accelerator facility named FAIR (Facility for Antiprotons and Ion Research) is being constructed at Darmstadt, which will be completed around the year 2015. It is expected that this accelerator facility will deliver a bunched uranium beam with an intensity of 5x10(11) ions per spill with a bunch length of 50-100 ns. An experiment named LAPLAS (Laboratory Planetary Sciences) has been proposed to achieve a low-entropy compression of a sample material like hydrogen or water (which are believed to be abundant in giant planets) that is imploded in a multi-layered target by the ion beam. Detailed numerical simulations have shown that using parameters of the heavy ion beam that will be available at FAIR, one can generate physical conditions that have been predicted to exist in the interior of giant planets. In the present paper, we report simulations of compression of water that show that one can generate a plasma phase as well as a superionic phase of water in the LAPLAS experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本论文首先介绍真空技术涉及的物理基础和真空获得的有关知识,然后讲述,了H_RFL(兰州重离子加速器研究装置)真空系统的基本概况,在此基础上阐述了本论文主要的两部分:H_RFL前束线真空系统的改造;新型H_RFL佩800低温泵的设计一及热负荷的计算。其中H工RF[前束线真空系统的改造已经于2001年9月份完成并为兰州重离子加速器的正常运行提供了必要的真空条件。新型111佩又FL佩800低温泵正在加工生产中,并将用于大型超高真空系统H工R凡厂SSC(兰州重离子加速器研究装置主加速器)的抽空。H工RFL前束线真空系统的改造介绍了兰州重离子加速器前束线真空系统的基本结构,详细说明了H工RFL前束线真空系统改造前的流导、气体负荷及压力分布情况。提出了具体的改造措施。真空系统达到了预计要求:泵口压强小于5只10-6Pa,两泵之间束运管道中心平面压强小于1x10-5Pa.结果表明H工RFL前束线真空系统的改造方案是有效的。新型HIRFL一800低温泵的设计及热负荷的计算介绍了近代物理研究所自行研制的新型H工RFL一800低温泵。对其抽速,低温冷凝板和屏蔽板的热负荷进行了具体的分析和计算。肯定了新型H工RFL佩800低温泵的设计方案。