925 resultados para TRACE validation
Resumo:
A simple, sensitive and reproducible spectrophotometric method was developed for the determination of sitagliptin phosphate in bulk and in pharmaceutical formulations. The proposed method is based on condensation of the primary amino group of sitagliptin phosphate with acetyl acetone and formaldehyde producing a yellow colored product, which is measured spectrophotometrically at 430nm. The color was stable for about 1 hour. Beer's law is obeyed over a concentration range of 5-25 µg/ml. The apparent molar absorptivity and Sandell sensitivity values are 1.067 x 10(4) Lmol-1cm-1 and 0.0471 µgcm-2 respectively. All the variables were studied to optimize the reaction conditions. No interference was observed in the presence of common pharmaceutical excipients. The validity of the method was tested by analyzing sitagliptin phosphate in its pharmaceutical preparations. Good recoveries were obtained. The developed method was successfully employed for the determination of sitagliptin phosphate in various pharmaceutical preparations.
Resumo:
The aim of this work was to develop and validate simple, accurate and precise spectroscopic methods (multicomponent, dual wavelength and simultaneous equations) for the simultaneous estimation and dissolution testing of ofloxacin and ornidazole tablet dosage forms. The medium of dissolution used was 900 ml of 0.01N HCl, using a paddle apparatus at a stirring rate of 50 rpm. The drug release was evaluated by developed and validated spectroscopic methods. Ofloxacin and ornidazole showed 293.4 and 319.6nm as λmax in 0.01N HCl. The methods were validated to meet requirements for a global regulatory filing. The validation included linearity, precision and accuracy. In addition, recovery studies and dissolution studies of three different tablets were compared and the results obtained show no significant difference among products.
Resumo:
Most warning systems for plant disease control are based on Vinho, in Bento Gonçalves - RS, during the growing seasons 2000/ weather models dependent on the relationships between leaf wetness 01, 2002/03 and 2003/2004, using the grape cultivar Isabel. The duration and mean air temperature in this period considering the conventional system used by local growers was compared with the target disease intensity. For the development of a warning system to new warning system by using different cumulative daily disease severity control grapevine downy mildew, the equation generated by Lalancette values (CDDSV) as the criterion to schedule fungicide application and et al. (7) was used. This equation was employed to elaborate a critical reapplication. In experiments conducted in 2003/04, CDDSV of 12 - period table and program a computerized device, which records, though 14 showed promising to schedule the first spraying and the interval electronic sensors, leaf wetness duration, mean temperature in this between fungicide applications, reducing by 37.5% the number of period and automatically calculates the daily value of probability of applications and maintaining the same control efficiency in leaves infection occurrence. The system was validated at Embrapa Uva e and bunches, similarly to the conventional system.
Resumo:
This Master´s thesis investigates the performance of the Olkiluoto 1 and 2 APROS model in case of fast transients. The thesis includes a general description of the Olkiluoto 1 and 2 nuclear power plants and of the most important safety systems. The theoretical background of the APROS code as well as the scope and the content of the Olkiluoto 1 and 2 APROS model are also described. The event sequences of the anticipated operation transients considered in the thesis are presented in detail as they will form the basis for the analysis of the APROS calculation results. The calculated fast operational transient situations comprise loss-of-load cases and two cases related to a inadvertent closure of one main steam isolation valve. As part of the thesis work, the inaccurate initial data values found in the original 1-D reactor core model were corrected. The input data needed for the creation of a more accurate 3-D core model were defined. The analysis of the APROS calculation results showed that while the main results were in good accordance with the measured plant data, also differences were detected. These differences were found to be caused by deficiencies and uncertainties related to the calculation model. According to the results the reactor core and the feedwater systems cause most of the differences between the calculated and measured values. Based on these findings, it will be possible to develop the APROS model further to make it a reliable and accurate tool for the analysis of the operational transients and possible plant modifications.
Resumo:
The aims of this study were to validate an international Health-Related Quality of Life (HRQL) instrument, to describe child self and parent-proxy assessed HRQL at child age 10 to 12 and to compare child self assessments with parent-proxy assessments and school nursing documentation. The study is part of the Schools on the Move –research project. In phase one, a cross-cultural translation and validation process was performed to develop a Finnish version of Pediatric Quality of Life Inventory™ 4.0 (PedsQL™ 4.0). The process included a two-way translation, cognitive interviews (children n=7, parents n=5) and a survey (children n=1097, parents n=999). In phase two, baseline and follow-up surveys (children n=986, parents n=710) were conducted to describe and compare the child self and parent-proxy assessed HRQL in school children between the ages 10 and 12. Phase three included two separate data, school nurse documented patient records (children n=270) and a survey (children n=986). The relation between child self assessed HRQL and school nursing documentation was evaluated. Validity and reliability of the Finnish version of PedsQL™ 4.0 was good (Child Self Report α=0.91, Parent-Proxy Report α=0.88). Children reported lower HRQL scores at the emotional (mean 76/80) than the physical (mean 85/89) health domains and significantly lower scores at the age of 10 than 12 (dMean=4, p=<0.001). Agreement between child self and parent-proxy assessment was fragile (r=0,4, p=<0.001) but increased as the child grew from age 10 to 12 years. At health check-ups, school nurses documented frequently children’s physical health, such as growth (97%) and posture (98/99%) but seldom emotional issues, such as mood (2/7%). The PedsQLTM 4.0 is a valid instrument to assess HRQL in Finnish school children although future research is recommended. Children’s emotional wellbeing needs future attention. HRQL scores increase during ages between childhood and adolescence. Concordance between child self and parent-proxy assessed HRQL is low. School nursing documentation, related to child health check-ups, is not in line with child self assessed HRQL and emotional issues need more attention.
Resumo:
Scarcity of long-term series of sediment-related variables has led watershed managers to apply mathematical models to simulate sediment fluxes. Due to the high efforts for installation and maintenance of sedimentological gauges, tracers have been pointed out as an alternative to validate soil redistribution modelling. In this study, the 137Cs technique was used to assess the WASA-SED model performance at the Benguê watershed (933 km²), in the Brazilian semiarid. Qualitatively, good agreement was found among the 137Cs technique and the WASA-SED model results. Nonetheless, quantitatively great differences, up to two orders of magnitude, were found between the two methods. Among the uncertainties inherent to the 137Cs technique, definition of the reference inventory seems to be a major source of imprecision. In addition, estimations of water and sediment fluxes with mathematical models usually also present high uncertainty, contributing to the quantitative differences of the soil redistribution estimates with the two methods.
Resumo:
Radiation balance is the fraction of incident solar radiation upon earth surface which is available to be used in several natural processes, such as biological metabolism, water loss by vegetated surfaces, variation of temperature in farming systems and organic decomposition. The present study aimed to assess and validate the performance of two estimation models for Rn in Ponta Grossa city, Paraná State, Brazil. To this end, during the period of 04/01/2008 to 04/30/2011, from radiometric data collected by an automatic weather station set at the Experimental Station, of the State University of Ponta Grossa. We performed a linear regression study by confrontation between measurements made through radiometric balance and Rn estimates obtained from Brunt classical method, and the proposed method. Both models showed excellent performance and were confirmed by the statistical parameters applied. However, the alternative method has the advantage of requiring only global solar radiation values, temperature, and relative humidity.
Resumo:
Cells of epithelial origin, e.g. from breast and prostate cancers, effectively differentiate into complex multicellular structures when cultured in three-dimensions (3D) instead of conventional two-dimensional (2D) adherent surfaces. The spectrum of different organotypic morphologies is highly dependent on the culture environment that can be either non-adherent or scaffold-based. When embedded in physiological extracellular matrices (ECMs), such as laminin-rich basement membrane extracts, normal epithelial cells differentiate into acinar spheroids reminiscent of glandular ductal structures. Transformed cancer cells, in contrast, typically fail to undergo acinar morphogenic patterns, forming poorly differentiated or invasive multicellular structures. The 3D cancer spheroids are widely accepted to better recapitulate various tumorigenic processes and drug responses. So far, however, 3D models have been employed predominantly in the Academia, whereas the pharmaceutical industry has yet to adopt a more widely and routine use. This is mainly due to poor characterisation of cell models, lack of standardised workflows and high throughput cell culture platforms, and the availability of proper readout and quantification tools. In this thesis, a complete workflow has been established entailing well-characterised 3D cell culture models for prostate cancer, a standardised 3D cell culture routine based on high-throughput-ready platform, automated image acquisition with concomitant morphometric image analysis, and data visualisation, in order to enable large-scale high-content screens. Our integrated suite of software and statistical analysis tools were optimised and validated using a comprehensive panel of prostate cancer cell lines and 3D models. The tools quantify multiple key cancer-relevant morphological features, ranging from cancer cell invasion through multicellular differentiation to growth, and detect dynamic changes both in morphology and function, such as cell death and apoptosis, in response to experimental perturbations including RNA interference and small molecule inhibitors. Our panel of cell lines included many non-transformed and most currently available classic prostate cancer cell lines, which were characterised for their morphogenetic properties in 3D laminin-rich ECM. The phenotypes and gene expression profiles were evaluated concerning their relevance for pre-clinical drug discovery, disease modelling and basic research. In addition, a spontaneous model for invasive transformation was discovered, displaying a highdegree of epithelial plasticity. This plasticity is mediated by an abundant bioactive serum lipid, lysophosphatidic acid (LPA), and its receptor LPAR1. The invasive transformation was caused by abrupt cytoskeletal rearrangement through impaired G protein alpha 12/13 and RhoA/ROCK, and mediated by upregulated adenylyl cyclase/cyclic AMP (cAMP)/protein kinase A, and Rac/ PAK pathways. The spontaneous invasion model tangibly exemplifies the biological relevance of organotypic cell culture models. Overall, this thesis work underlines the power of novel morphometric screening tools in drug discovery.
Resumo:
Objective: To develop and validate an instrument for measuring the acquisition of technical skills in conducting operations of increasing difficulty for use in General Surgery Residency (GSR) programs. Methods: we built a surgical skills assessment tool containing 11 operations in increasing levels of difficulty. For instrument validation we used the face validaity method. Through an electronic survey tool (Survey MonKey(r)) we sent a questionnaire to Full and Emeritus members of the Brazilian College of Surgeons - CBC - all bearers of the CBC Specialist Title. Results: Of the 307 questionnaires sent we received 100 responses. For the analysis of the data collected we used the Cronbach's alpha test. We observed that, in general, the overall alpha presented with values near or greater than 0.70, meaning good consistency to assess their points of interest. Conclusion: The evaluation instrument built was validated and can be used as a method of assessment of technical skill acquisition in the General Surgery Residency programs in Brazil.
Resumo:
This thesis presents an approach for formulating and validating a space averaged drag model for coarse mesh simulations of gas-solid flows in fluidized beds using the two-fluid model. Proper modeling for fluid dynamics is central in understanding any industrial multiphase flow. The gas-solid flows in fluidized beds are heterogeneous and usually simulated with the Eulerian description of phases. Such a description requires the usage of fine meshes and small time steps for the proper prediction of its hydrodynamics. Such constraint on the mesh and time step size results in a large number of control volumes and long computational times which are unaffordable for simulations of large scale fluidized beds. If proper closure models are not included, coarse mesh simulations for fluidized beds do not give reasonable results. The coarse mesh simulation fails to resolve the mesoscale structures and results in uniform solids concentration profiles. For a circulating fluidized bed riser, such predicted profiles result in a higher drag force between the gas and solid phase and also overestimated solids mass flux at the outlet. Thus, there is a need to formulate the closure correlations which can accurately predict the hydrodynamics using coarse meshes. This thesis uses the space averaging modeling approach in the formulation of closure models for coarse mesh simulations of the gas-solid flow in fluidized beds using Geldart group B particles. In the analysis of formulating the closure correlation for space averaged drag model, the main parameters for the modeling were found to be the averaging size, solid volume fraction, and distance from the wall. The closure model for the gas-solid drag force was formulated and validated for coarse mesh simulations of the riser, which showed the verification of this modeling approach. Coarse mesh simulations using the corrected drag model resulted in lowered values of solids mass flux. Such an approach is a promising tool in the formulation of appropriate closure models which can be used in coarse mesh simulations of large scale fluidized beds.
Resumo:
In this thesis, a model called CFB3D is validated for oxygen combustion in circulating fluidized bed boiler. The first part of the work consists of literature review in which circulating fluidized bed and oxygen combustion technologies are studied. In addition, the modeling of circulating fluidized bed furnaces is discussed and currently available industrial scale three-dimensional furnace models are presented. The main features of CFB3D model are presented along with the theories and equations related to the model parameters used in this work. The second part of this work consists of the actual research and modeling work including measurements, model setup, and modeling results. The objectives of this thesis is to study how well CFB3D model works with oxygen combustion compared to air combustion in circulating fluidized bed boiler and what model parameters need to be adjusted when changing from air to oxygen combustion. The study is performed by modeling two air combustion cases and two oxygen combustion cases with comparable boiler loads. The cases are measured at Ciuden 30 MWth Flexi-Burn demonstration plant in April 2012. The modeled furnace temperatures match with the measurements as well in oxygen combustion cases as in air combustion cases but the modeled gas concentrations differ from the measurements clearly more in oxygen combustion cases. However, the same model parameters are optimal for both air and oxygen combustion cases. When the boiler load is changed, some combustion and heat transfer related model parameters need to be adjusted. To improve the accuracy of modeling results, better flow dynamics model should be developed in the CFB3D model. Additionally, more measurements are needed from the lower furnace to find the best model parameters for each case. The validation work needs to be continued in order to improve the modeling results and model predictability.
Resumo:
One of the problems that slows the development of off-line programming is the low static and dynamic positioning accuracy of robots. Robot calibration improves the positioning accuracy and can also be used as a diagnostic tool in robot production and maintenance. A large number of robot measurement systems are now available commercially. Yet, there is a dearth of systems that are portable, accurate and low cost. In this work a measurement system that can fill this gap in local calibration is presented. The measurement system consists of a single CCD camera mounted on the robot tool flange with a wide angle lens, and uses space resection models to measure the end-effector pose relative to a world coordinate system, considering radial distortions. Scale factors and image center are obtained with innovative techniques, making use of a multiview approach. The target plate consists of a grid of white dots impressed on a black photographic paper, and mounted on the sides of a 90-degree angle plate. Results show that the achieved average accuracy varies from 0.2mm to 0.4mm, at distances from the target from 600mm to 1000mm respectively, with different camera orientations.
Resumo:
In today's logistics environment, there is a tremendous need for accurate cost information and cost allocation. Companies searching for the proper solution often come across with activity-based costing (ABC) or one of its variations which utilizes cost drivers to allocate the costs of activities to cost objects. In order to allocate the costs accurately and reliably, the selection of appropriate cost drivers is essential in order to get the benefits of the costing system. The purpose of this study is to validate the transportation cost drivers of a Finnish wholesaler company and ultimately select the best possible driver alternatives for the company. The use of cost driver combinations as an alternative is also studied. The study is conducted as a part of case company's applied ABC-project using the statistical research as the main research method supported by a theoretical, literature based method. The main research tools featured in the study include simple and multiple regression analyses, which together with the literature and observations based practicality analysis forms the basis for the advanced methods. The results suggest that the most appropriate cost driver alternatives are the delivery drops and internal delivery weight. The possibility of using cost driver combinations is not suggested as their use doesn't provide substantially better results while increasing the measurement costs, complexity and load of use at the same time. The use of internal freight cost drivers is also questionable as the results indicate weakening trend in the cost allocation capabilities towards the end of the period. Therefore more research towards internal freight cost drivers should be conducted before taking them in use.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
Capillary electrophoresis method designed originally for the analysis of monosaccharides was validated using reference solutions of polydatin. The validation was conducted by studying and determining the concentration levels of LOD and LOQ and the range of linearity and by determining levels of uncertainty in respect to repeatability and reproducibility. The reliability of the gained results is also discussed. A guide with recommendations considering the validation and overall design of analysis sequences with CE is also produced as a result of this study.