915 resultados para State-based Specifications
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The current version of the SUDAS Specifications will be revised to accommodate the DOT’s utilization of SUDAS. The revisions to the SUDAS Specifications will be based upon the recommendations from Phase 1. In some instances, the recommendations will require reorganization of portions of the SUDAS Specifications. Upon incorporation of the Phase 1 recommendations, each applicable Division of the SUDAS Specifications will be updated into the active-imperative style, utilizing the 3- part specification format currently utilized by SUDAS.
Resumo:
The state of the art to describe image quality in medical imaging is to assess the performance of an observer conducting a task of clinical interest. This can be done by using a model observer leading to a figure of merit such as the signal-to-noise ratio (SNR). Using the non-prewhitening (NPW) model observer, we objectively characterised the evolution of its figure of merit in various acquisition conditions. The NPW model observer usually requires the use of the modulation transfer function (MTF) as well as noise power spectra. However, although the computation of the MTF poses no problem when dealing with the traditional filtered back-projection (FBP) algorithm, this is not the case when using iterative reconstruction (IR) algorithms, such as adaptive statistical iterative reconstruction (ASIR) or model-based iterative reconstruction (MBIR). Given that the target transfer function (TTF) had already shown it could accurately express the system resolution even with non-linear algorithms, we decided to tune the NPW model observer, replacing the standard MTF by the TTF. It was estimated using a custom-made phantom containing cylindrical inserts surrounded by water. The contrast differences between the inserts and water were plotted for each acquisition condition. Then, mathematical transformations were performed leading to the TTF. As expected, the first results showed a dependency of the image contrast and noise levels on the TTF for both ASIR and MBIR. Moreover, FBP also proved to be dependent of the contrast and noise when using the lung kernel. Those results were then introduced in the NPW model observer. We observed an enhancement of SNR every time we switched from FBP to ASIR to MBIR. IR algorithms greatly improve image quality, especially in low-dose conditions. Based on our results, the use of MBIR could lead to further dose reduction in several clinical applications.
Resumo:
Large Dynamic Message Signs (DMSs) have been increasingly used on freeways, expressways and major arterials to better manage the traffic flow by providing accurate and timely information to drivers. Overhead truss structures are typically employed to support those DMSs allowing them to provide wider display to more lanes. In recent years, there is increasing evidence that the truss structures supporting these large and heavy signs are subjected to much more complex loadings than are typically accounted for in the codified design procedures. Consequently, some of these structures have required frequent inspections, retrofitting, and even premature replacement. Two manufacturing processes are primarily utilized on truss structures - welding and bolting. Recently, cracks at welding toes were reported for the structures employed in some states. Extremely large loads (e.g., due to high winds) could cause brittle fractures, and cyclic vibration (e.g., due to diurnal variation in temperature or due to oscillations in the wind force induced by vortex shedding behind the DMS) may lead to fatigue damage, as these are two major failures for the metallic material. Wind and strain resulting from temperature changes are the main loads that affect the structures during their lifetime. The American Association of State Highway and Transportation Officials (AASHTO) Specification defines the limit loads in dead load, wind load, ice load, and fatigue design for natural wind gust and truck-induced gust. The objectives of this study are to investigate wind and thermal effects in the bridge type overhead DMS truss structures and improve the current design specifications (e.g., for thermal design). In order to accomplish the objective, it is necessary to study structural behavior and detailed strain-stress of the truss structures caused by wind load on the DMS cabinet and thermal load on the truss supporting the DMS cabinet. The study is divided into two parts. The Computational Fluid Dynamics (CFD) component and part of the structural analysis component of the study were conducted at the University of Iowa while the field study and related structural analysis computations were conducted at the Iowa State University. The CFD simulations were used to determine the air-induced forces (wind loads) on the DMS cabinets and the finite element analysis was used to determine the response of the supporting trusses to these pressure forces. The field observation portion consisted of short-term monitoring of several DMS Cabinet/Trusses and long-term monitoring of one DMS Cabinet/Truss. The short-term monitoring was a single (or two) day event in which several message sign panel/trusses were tested. The long-term monitoring field study extended over several months. Analysis of the data focused on trying to identify important behaviors under both ambient and truck induced winds and the effect of daily temperature changes. Results of the CFD investigation, field experiments and structural analysis of the wind induced forces on the DMS cabinets and their effect on the supporting trusses showed that the passage of trucks cannot be responsible for the problems observed to develop at trusses supporting DMS cabinets. Rather the data pointed toward the important effect of the thermal load induced by cyclic (diurnal) variations of the temperature. Thermal influence is not discussed in the specification, either in limit load or fatigue design. Although the frequency of the thermal load is low, results showed that when temperature range is large the restress range would be significant to the structure, especially near welding areas where stress concentrations may occur. Moreover stress amplitude and range are the primary parameters for brittle fracture and fatigue life estimation. Long-term field monitoring of one of the overhead truss structures in Iowa was used as the research baseline to estimate the effects of diurnal temperature changes to fatigue damage. The evaluation of the collected data is an important approach for understanding the structural behavior and for the advancement of future code provisions. Finite element modeling was developed to estimate the strain and stress magnitudes, which were compared with the field monitoring data. Fatigue life of the truss structures was also estimated based on AASHTO specifications and the numerical modeling. The main conclusion of the study is that thermal induced fatigue damage of the truss structures supporting DMS cabinets is likely a significant contributing cause for the cracks observed to develop at such structures. Other probable causes for fatigue damage not investigated in this study are the cyclic oscillations of the total wind load associated with the vortex shedding behind the DMS cabinet at high wind conditions and fabrication tolerances and induced stresses due to fitting of tube to tube connections.
Resumo:
This paper presents a new and original variational framework for atlas-based segmentation. The proposed framework integrates both the active contour framework, and the dense deformation fields of optical flow framework. This framework is quite general and encompasses many of the state-of-the-art atlas-based segmentation methods. It also allows to perform the registration of atlas and target images based on only selected structures of interest. The versatility and potentiality of the proposed framework are demonstrated by presenting three diverse applications: In the first application, we show how the proposed framework can be used to simulate the growth of inconsistent structures like a tumor in an atlas. In the second application, we estimate the position of nonvisible brain structures based on the surrounding structures and validate the results by comparing with other methods. In the final application, we present the segmentation of lymph nodes in the Head and Neck CT images, and demonstrate how multiple registration forces can be used in this framework in an hierarchical manner.
Resumo:
Lasers are essential tools for cell isolation and monolithic interconnection in thin-film-silicon photovoltaic technologies. Laser ablation of transparent conductive oxides (TCOs), amorphous silicon structures and back contact removal are standard processes in industry for monolithic device interconnection. However, material ablation with minimum debris and small heat affected zone is one of the main difficulty is to achieve, to reduce costs and to improve device efficiency. In this paper we present recent results in laser ablation of photovoltaic materials using excimer and UV wavelengths of diode-pumped solid-state (DPSS) laser sources. We discuss results concerning UV ablation of different TCO and thin-film silicon (a-Si:H and nc-Si:H), focussing our study on ablation threshold measurements and process-quality assessment using advanced optical microscopy techniques. In that way we show the advantages of using UV wavelengths for minimizing the characteristic material thermal affection of laser irradiation in the ns regime at higher wavelengths. Additionally we include preliminary results of selective ablation of film on film structures irradiating from the film side (direct writing configuration) including the problem of selective ablation of ZnO films on a-Si:H layers. In that way we demonstrate the potential use of UV wavelengths of fully commercial laser sources as an alternative to standard backscribing process in device fabrication.
Resumo:
Multi-span pre-tensioned pre-stressed concrete beam (PPCB) bridges made continuous usually experience a negative live load moment region over the intermediate supports. Conventional thinking dictates that sufficient reinforcement must be provided in this region to satisfy the strength and serviceability requirements associated with the tensile stresses in the deck. The American Association of State Highway and Transportation Officials (AASHTO) Load and Resistance Factor Design (LRFD) Bridge Design Specifications recommend the negative moment reinforcement (b2 reinforcement) be extended beyond the inflection point. Based upon satisfactory previous performance and judgment, the Iowa Department of Transportation (DOT) Office of Bridges and Structures (OBS) currently terminates b2 reinforcement at 1/8 of the span length. Although the Iowa DOT policy results in approximately 50% shorter b2 reinforcement than the AASHTO LRFD specifications, the Iowa DOT has not experienced any significant deck cracking over the intermediate supports. The primary objective of this project was to investigate the Iowa DOT OBS policy regarding the required amount of b2 reinforcement to provide the continuity over bridge decks. Other parameters, such as termination length, termination pattern, and effects of the secondary moments, were also studied. Live load tests were carried out on five bridges. The data were used to calibrate three-dimensional finite element models of two bridges. Parametric studies were conducted on the bridges with an uncracked deck, a cracked deck, and a cracked deck with a cracked pier diaphragm for live load and shrinkage load. The general conclusions were as follows: -- The parametric study results show that an increased area of the b2 reinforcement slightly reduces the strain over the pier, whereas an increased length and staggered reinforcement pattern slightly reduce the strains of the deck at 1/8 of the span length. -- Finite element modeling results suggest that the transverse field cracks over the pier and at 1/8 of the span length are mainly due to deck shrinkage. -- Bridges with larger skew angles have lower strains over the intermediate supports. -- Secondary moments affect the behavior in the negative moment region. The impact may be significant enough such that no tensile stresses in the deck may be experienced.
Resumo:
The Iowa State Profile Tool is a comprehensive, high-level assessment of Iowa’s progress toward a balanced long-term care system – a system that relies less on institutional services and provides greater opportunities for the in-home and community-based services that most people prefer. This report includes long-term support for people of all ages and disability types and is based on a variety of state and federal data sources and interviews with public and private leaders in Iowa’s long-term care system.
Resumo:
A conceptual framework for crop production efficiency was derived using thermodynamic efficiency concept, in order to generate a tool for performance evaluation of agricultural systems and to quantify the interference of determining factors on this performance. In Thermodynamics, efficiency is the ratio between the output and input of energy. To establish this relationship in agricultural systems, it was assumed that the input energy is represented by the attainable crop yield, as predicted through simulation models based on environmental variables. The method of FAO's agroecological zones was applied to the assessment of the attainable sugarcane yield, while Instituto Brasileiro de Geografia e Estatística (IBGE) data were used as observed yield. Sugarcane efficiency production in São Paulo state was evaluated in two growing seasons, and its correlation with some physical factors that regulate production was calculated. A strong relationship was identified between crop production efficiency and soil aptitude. This allowed inferring the effect of agribusiness factors on crop production efficiency. The relationships between production efficiency and climatic variables were also quantified and indicated that solar radiation, annual rainfall, water deficiency, and maximum air temperature are the main factors affecting the sugarcane production efficiency.
Resumo:
The Iowa Department of Education (DE) was appropriated $1.45 million for the development and implementation of a statewide work-based learning intermediary network. This funding was awarded on a competitive basis to 15 regional intermediary networks. Funds received by the regional intermediary networks from the state through this grant are to be used to develop and expand work-based learning opportunities within each region. A match of resources equal to 25 percent was a requirement of the funding. This match could include private donations, in-kind contributions, or public moneys. Funds may be used to support personnel responsible for the implementation of the intermediary network program components.
Resumo:
This information is based on Iowa Department of Administrative Services (DAS) rules and policies and does not create an employment contract. Much of the information in this handbook is also covered in the State’s collective bargaining agreements. Where there are differences between a collective bargaining agreement and this handbook, the collective bargaining agreement prevails for employees covered by the agreement. Where there are differences between this handbook and DAS rules and policies, DAS rules and policies prevail.
Resumo:
Background: We are not aware of any population-based cohort study of risk factors of stroke in the African region. We conducted a longitudinal study in the Seychelles (Indian Ocean, east of Kenya), a middle-income island state with majority of the population of African descent. Data in Africa are important for international comparison and for advocacy in the region. Methods: Three population-based examination surveys were performed in 1989, 1994 and 2004 (n_1081, 1067, and 1255, respectively). Baseline data were linked with cause-specific mortality from vital statistics up to May 2007. We considered stroke (any type) as a cause of death if the diagnosis was reported in any of the 4 fields for underlying and concomitant causes of death. Results. Among the 3317 different persons aged 25-64 at baseline, 291 died including 58 with stroke during follow up (mean: 10.2 years). The prevalence of high blood pressure (BP _140/90 mmHg) was 38%. In multivariate Cox regression, stroke mortality was increased by 18% and 35% for a 10-mmHg increase in systolic, respectively diastolic BP (p_0.001). The hazard ratios were 2.4 (95% CI: 1.7-3.3) for a 10-year age increase, 0.32 (0.15- 0.67) for a 1-mmol HDL-cholesterol increase, 2.2 (1.1- 4.2) for smoking _5 cigarettes vs. no smoking and 1.7 for diabetes (0.93-3.3; p_0.08). No significant association was found for sex, LDL-cholesterol, alcohol intake, and occupation. Conclusion. This first populationbased cohort study in the African region demonstrates high mortality rates from stroke in middle-aged adults and confirms the important role of high BP. This emphasizes the critical importance of reducing BP and other modifiable risk factors in this population.
Resumo:
This report summarizes progress made in Phase 1 of the GIS-based Accident Location and Analysis System (GIS-ALAS) project. The GIS-ALAS project builds on several longstanding efforts by the Iowa Department of Transportation (DOT), law enforcement agencies, Iowa State University, and several other entities to create a locationally-referenced highway accident database for Iowa. Most notable of these efforts is the Iowa DOT’s development of a PC-based accident location and analysis system (PC-ALAS), a system that has been well received by users since it was introduced in 1989. With its pull-down menu structure, PC-ALAS is more portable and user-friendly than its mainframe predecessor. Users can obtain accident statistics for locations during specified time periods. Searches may be refined to identify accidents of specific types or involving drivers with certain characteristics. Output can be viewed on a computer screen, sent to a file, or printed using pre-defined formats.
Resumo:
A specification for contractor moisture quality control (QC) in roadway embankment construction has been in use for approximately 10 years in Iowa on about 190 projects. The use of this QC specification and the development of the soils certification program for the Iowa Department of Transportation (DOT) originated from Iowa Highway Research Board (IHRB) embankment quality research projects. Since this research, the Iowa DOT has applied compaction with moisture control on most embankment work under pavements. This study set out to independently evaluate the actual quality of compaction using the current specifications. Results show that Proctor tests conducted by Iowa State University (ISU) using representative material obtained from each test section where field testing was conducted had optimum moisture contents and maximum dry densities that are different from what was selected by the Iowa DOT for QC/quality assurance (QA) testing. Comparisons between the measured and selected values showed a standard error of 2.9 lb/ft3 for maximum dry density and 2.1% for optimum moisture content. The difference in optimum moisture content was as high as 4% and the difference in maximum dry density was as high as 6.5 lb/ft3 . The difference at most test locations, however, were within the allowable variation suggested in AASHTO T 99 for test results between different laboratories. The ISU testing results showed higher rates of data outside of the target limits specified based on the available contractor QC data for cohesive materials. Also, during construction observations, wet fill materials were often observed. Several test points indicated that materials were placed and accepted at wet of the target moisture contents. The statistical analysis results indicate that the results obtained from this study showed improvements over results from previous embankment quality research projects (TR-401 Phases I through III and TR-492) in terms of the percentage of data that fell within the specification limits. Although there was evidence of improvement, QC/QA results are not consistently meeting the target limits/values. Recommendations are provided in this report for Iowa DOT consideration with three proposed options for improvements to the current specifications. Option 1 provides enhancements to current specifications in terms of material-dependent control limits, training, sampling, and process control. Option 2 addresses development of alternative specifications that incorporate dynamic cone penetrometer or light weight deflectometer testing into QC/QA. Option 3 addresses incorporating calibrated intelligent compaction measurements into QC/QA.
Resumo:
The objective of this work was to compare fungicide application timing for the control of sooty blotch and flyspeck (SBFS) of 'Fuji' apples in Rio Grande do Sul state, Brazil. The following treatments were evaluated in two growing seasons: two warning system-based (modified version of the Brown-Sutton-Hartmann system) spray of captan plus thiophanate methyl, with or without summer pruning; two calendar/rain-based spray of captan or a mixture of captan plus thiophanate methyl; fungicide spray timing based on a local integrated pest management (IPM) for the control of summer diseases; and a check without spraying. Sooty blotch and flyspeck incidence over time and their severity at harvest were evaluated. The highest number of spray was required by calendar/rain-based treatments (eight and seven sprays in the sequential years). The warning system recommended five and three sprays, in the sequential years, which led to the highest SBFS control efficacy expressed by the reduced initial inoculum and disease progress rate. Summer pruning enhanced SBFS control efficacy, especially by suppressing SBFS signs which tended to be restrained to the peduncle region of the fruit. Sooty blotch and flyspeck can be managed both with calendar and the grower-based IPM practices in Brazil, but a reduced number of sprays is required when the warning system is used.