894 resultados para Stars: mass-loss
Resumo:
Although dietary patterns and their association with health outcomes is not a new topic, they have not been widely studied in Mexican-American populations. There are no studies of fruit and vegetable dietary patterns related to weight loss in Mexican-American women. This study aims to examine whether a change in proportion of fruit and vegetable consumption results in a change in weight. A secondary data analysis of 208 overweight or obese Mexican-American women from the Unidos en Salud weight loss intervention study was performed to investigate this relationship. Through regression analysis, the change in weight for every unit change in proportion of fruits and vegetables was tested with appropriate adjustment for age. The results showed a significant inverse association between fruit and vegetable intake densities and weight change. These results support previous studies and provide a possible effective and efficient method to reduce body mass index (BMI) among overweight or obese Mexican-American women. ^
Resumo:
The Late Permian mass extinction event about 252 million years ago was the most severe biotic crisis of the past 500 million years and occurred during an episode of global warming. The loss of around two-thirds of marine genera is thought to have had substantial ecological effects, but the overall impacts on the functioning of marine ecosystems and the pattern of marine recovery are uncertain. Here we analyse the fossil occurrences of all known benthic marine invertebrate genera from the Permian and Triassic periods, and assign each to a functional group based on their inferred lifestyle. We show that despite the selective extinction of 62-74% of these genera, all but one functional group persisted through the crisis, indicating that there was no significant loss of functional diversity at the global scale. In addition, only one new mode of life originated in the extinction aftermath. We suggest that Early Triassic marine ecosystems were not as ecologically depauperate as widely assumed. Functional diversity was, however, reduced in particular regions and habitats, such as tropical reefs; at these smaller scales, recovery varied spatially and temporally, probably driven by migration of surviving groups. We find that marine ecosystems did not return to their pre-extinction state, and by the Middle Triassic greater functional evenness is recorded, resulting from the radiation of previously subordinate groups such as motile, epifaunal grazers.
Resumo:
One of the reasons for animals not to grow as fast as they potentially could is that fast growth has been shown to be associated with reduced lifespan. However, we are still lacking a clear description of the reality of growth-dependent modulation of ageing mechanisms in wild animals. Using the particular growth trajectory of small king penguin chicks naturally exhibiting higher-than-normal growth rate to compensate for the winter break, we tested whether oxidative stress and telomere shortening are related to growth trajectories. Plasma antioxidant defences, oxidative damage levels and telomere length were measured at the beginning and at the end of the post-winter growth period in three groups of chicks (small chicks, which either passed away or survived the growth period, and large chicks). Small chicks that died early during the growth period had the highest level of oxidative damage and the shortest telomere lengths prior to death. Here, we show that small chicks that grew faster did it at the detriment of body maintenance mechanisms as shown by (i) higher oxidative damage and (ii) accelerated telomere loss. Our study provides the first evidence for a mechanistic link between growth and ageing rates under natural conditions.
Resumo:
The Antarctic Peninsula has been identified as a region of rapid on-going climate change with impacts on the cryosphere. The knowledge of glacial changes and freshwater budgets resulting from intensified glacier melt is an important boundary condition for many biological and integrated earth system science approaches. We provide a case study on glacier and mass balance changes for the ice cap of King George Island. The area loss between 2000 and 2008 amounted to about 20 km**2 (about 1.6% of the island area) and compares to glacier retreat rates observed in previous years. Measured net accumulation rates for two years (2007 and 2008) show a strong interannual variability with maximum net accumulation rates of 4950 mm w.e./a and 3184 mm w.e./a, respectively. These net accumulation rates are at least 4 times higher than reported mean values (1926-95) from an ice core. An elevation dependent precipitation rate of 343 mm w.e./a (2007) and 432 mm w.e./a (2008) per 100 m elevation increase was observed. Despite these rather high net accumulation rates on the main ice cap, consistent surface lowering was observed at elevations below 270 m above ellipsoid over an 11-year period. These DGPS records reveal a linear dependence of surface lowering with altitude with a maximum annual surface lowering rate of 1.44 m/a at 40 m and -0.20 m/a at 270 m above ellipsoid. These results fit well to observations by other authors and surface lowering rates derived from the ICESat laser altimeter. Assuming that climate conditions of the past 11 years continue, the small ice cap of Bellingshausen Dome will disappear in about 285 years.
Resumo:
The loss of water in a desiccating atmosphere (c.40% r.h. at 10°C) and uptake of water from a saturated atmosphere (100% r.h. at 10°C) was recorded at intervals over periods of many hours or days in the dominant mosses and macroiichens occurring near the Australian Casey Station. Wilkes Land, continental Antarctica. While major differences exist in the water holding capacity and rates of water loss between mosses and lichens, the minimum levels attained after prolonged exposure to desiccating conditions are remarkably similar. By contrast, the volume of water absorbed from a saturated atmosphere is very similar in both groups of cryptogams. Morphological and anatomical characters are responsible for many of the differences, both between species, and within species exhibiting different growth features. Thus, significantly larger amounts of water are held by colonies of Bryum algens with a dense tomentum of rhizoids than those with sparse rhizoids; similarly, the rhizinate Umbilicaria aprina held a greater volume of water than the erhizinate U. decussata. The filamentous mat form of Alectoria mimiscula permits a much higher water content to be attained than in the coarser fruticose forms of Usnea sphacelata and U. antarctica. The dense shoot arrangement in Schistidium antarcticum accounts for the high water holding capacity in the hydric turf form whereas the less densely packed shoots and thicker cell walls of the xeric cushion form maintain a lower water content. The rate of water loss (as percentage dry weight) was much faster in the turf form of Schistidium and tomenlose form of Bryum, although this trend was reversed when expressed as percentage of the initial water content. Minimal water contents arc achieved by the lichens in desiccating conditions within 6-12 hours, whereas the mosses take several times longer. The water relations characteristics of these cryptogams are considered in the light of their distribution in the field and of their metabolic activity under prevailing Antarctic conditions.
Resumo:
The present study examines sublethal effects of near-future (year 2100) ocean acidification (OA) on regenerative capacity, biochemical composition, and behavior of the sea star Luidia clathrata, a predominant predator in sub-tropical soft-bottom habitats. Two groups of sea stars, each with two arms excised, were maintained on a formulated diet in seawater bubbled with air alone (pH 8.2, approximating a pCO2 of 380 µatm) or with a controlled mixture of air/C02 (pH 7.8, approximating a pCO2 of 780 µatm). Arm length, total body wet weight, and righting responses were measured weekly. After 97 days, a period of time sufficient for 80% arm regeneration, pyloric caecal indices, and protein, carbohydrate, lipid, and ash levels were determined for body wall and pyloric caecal tissues of intact and regenerating arms of individuals held in both seawater pH treatments. The present study indicates that predicted near-term levels of ocean acidification (seawater pH 7.8) do not significantly impact whole animal growth, arm regeneration rates, biochemical composition, or righting behavior in this common soft bottom sea star.
Resumo:
Accurate prediction of global sea-level rise requires that we understand the cause of recent, widespread and intensifying glacier acceleration along Antarctic ice-sheet coastal margins. Floating ice shelves buttress the flow of grounded tributary glaciers and their thickness and extent are particularly susceptible to changes in both climate and ocean forcing. Recent ice-shelf collapse led to retreat and acceleration of several glaciers on the Antarctic Peninsula. However, the extent and magnitude of ice-shelf thickness change, its causes and its link to glacier flow rate are so poorly understood that its influence on the future of the ice sheets cannot yet be predicted. Here we use satellite laser altimetry and modelling of the surface firn layer to reveal for the first time the circum-Antarctic pattern of ice-shelf thinning through increased basal melt. We deduce that this increased melt is the primary driver of Antarctic ice-sheet loss, through a reduction in buttressing of the adjacent ice sheet that has led to accelerated glacier flow. The highest thinning rates (~7 m/a) occur where warm water at depth can access thick ice shelves via submarine troughs crossing the continental shelf. Wind forcing could explain the dominant patterns of both basal melting and the surface melting and collapse of Antarctic ice shelves, through ocean upwelling in the Amundsen and Bellingshausen Seas and atmospheric warming on the Antarctic Peninsula. This implies that climate forcing through changing winds influences Antarctic Ice Sheet mass balance, and hence global sea-level, on annual to decadal timescales.
Resumo:
In this article, methods and results are presented for the analysis of the behaviour of an alpine glacier, the Vernagtferner, Oetztal Alps, Austria. Since 1601, the advances and retreats of Vernagtferner are documented and analysed with rising temporal and spa- tial precision. Early pictorial documents (from 1601 to 1844), high-resolution maps since 1889, mass balance investigations with the glaciological method since 1964 and meteorological-hydrological records and models since 1974 deliver, with increasing temporal resolution, a consistent pattern of the continual ice loss of this glacier over more than 30 years.
Resumo:
Ocean acidification has the potential to affect growth and calcification of benthic marine invertebrates, particularly during their early life history. We exposed field-collected juveniles of Asterias rubens from Kiel Fjord (western Baltic Sea) to 3 seawater CO2 partial pressure (pCO2) levels (ranging from around 650 to 3500 µatm) in a long-term (39 wk) and a short-term (6 wk) experiment. In both experiments, survival and calcification were not affected by elevated pCO2. However, feeding rates decreased strongly with increasing pCO2, while aerobic metabolism and NH4+ excretion were not significantly affected by CO2 exposure. Consequently, high pCO2 reduced the scope for growth in A. rubens. Growth rates decreased substantially with increasing pCO2 and were reduced even at pCO2 levels occurring in the habitat today (e.g. during upwelling events). Sea stars were not able to acclimate to higher pCO2, and growth performance did not recover during the long-term experiment. Therefore, the top-down control exerted by this keystone species may be diminished during periods of high environmental pCO2 that already occur occasionally and will be even higher in the future. However, some individuals were able to grow at high rates even at high pCO2, indicating potential for rapid adaption. The selection of adapted specimens of A. rubens in this seasonally acidified habitat may lead to higher CO2 tolerance in adult sea stars of this population compared to the juvenile stage. Future studies need to address the synergistic effects of multiple stressors such as acidification, warming and reduced salinity, which will simultaneously impact the performance of sea stars in this habitat.