Mass balance measurements on King George Island ice cap in 2007 and 2008


Autoria(s): Rückamp, Martin; Braun, Matthias; Suckro, Sonja K; Blindow, Norbert
Cobertura

MEDIAN LATITUDE: -62.068374 * MEDIAN LONGITUDE: -58.510997 * SOUTH-BOUND LATITUDE: -62.139620 * WEST-BOUND LONGITUDE: -58.765030 * NORTH-BOUND LATITUDE: -61.973930 * EAST-BOUND LONGITUDE: -58.241760 * DATE/TIME START: 2007-01-01T00:00:00 * DATE/TIME END: 2008-01-01T00:00:00 * MINIMUM ELEVATION: 390 m a.s.l. * MAXIMUM ELEVATION: 691 m a.s.l.

Data(s)

02/01/2011

Resumo

The Antarctic Peninsula has been identified as a region of rapid on-going climate change with impacts on the cryosphere. The knowledge of glacial changes and freshwater budgets resulting from intensified glacier melt is an important boundary condition for many biological and integrated earth system science approaches. We provide a case study on glacier and mass balance changes for the ice cap of King George Island. The area loss between 2000 and 2008 amounted to about 20 km**2 (about 1.6% of the island area) and compares to glacier retreat rates observed in previous years. Measured net accumulation rates for two years (2007 and 2008) show a strong interannual variability with maximum net accumulation rates of 4950 mm w.e./a and 3184 mm w.e./a, respectively. These net accumulation rates are at least 4 times higher than reported mean values (1926-95) from an ice core. An elevation dependent precipitation rate of 343 mm w.e./a (2007) and 432 mm w.e./a (2008) per 100 m elevation increase was observed. Despite these rather high net accumulation rates on the main ice cap, consistent surface lowering was observed at elevations below 270 m above ellipsoid over an 11-year period. These DGPS records reveal a linear dependence of surface lowering with altitude with a maximum annual surface lowering rate of 1.44 m/a at 40 m and -0.20 m/a at 270 m above ellipsoid. These results fit well to observations by other authors and surface lowering rates derived from the ICESat laser altimeter. Assuming that climate conditions of the past 11 years continue, the small ice cap of Bellingshausen Dome will disappear in about 285 years.

Formato

text/tab-separated-values, 124 data points

Identificador

https://doi.pangaea.de/10.1594/PANGAEA.773308

doi:10.1594/PANGAEA.773308

Idioma(s)

en

Publicador

PANGAEA

Direitos

CC-BY: Creative Commons Attribution 3.0 Unported

Access constraints: unrestricted

Fonte

Supplement to: Rückamp, Martin; Braun, Matthias; Suckro, Sonja K; Blindow, Norbert (2011): Observed glacial changes on the King George Island ice cap, Antarctica, in the last decade. Global and Planetary Change, 79(1-2), 99-109, doi:10.1016/j.gloplacha.2011.06.009

Palavras-Chave #DATE/TIME; DFG-Schwerpunktprogramm 1158 - Antarktisforschung; DFG-SPP1158; ELEVATION; King_George_Island; King George Island, Antarctic Peninsula; LATITUDE; LONGITUDE; Mass balance in water equivalent per year; UTM Easting, Universal Transverse Mercator; UTM Northing, Universal Transverse Mercator; UTM Zone, Universal Transverse Mercator
Tipo

Dataset