969 resultados para Soft liner material
Resumo:
Consultoria Legislativa - Área I - Direito Constitucional, Eleitoral, Municipal, Administrativo, Processo Legislativo e Poder Judiciário.
Resumo:
Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.
Resumo:
The various patterns (shear banding, surface wrinkling and necking) of material bifurcation in plane sheet under tension are investigated in this paper by means of a numerical method. It is found that numerical analysis can provide better ground for searching for the lowest critical loads. The inhomogeneity caused by void damage and the nonuniformity in the stress distribution across sheet thickness are proved to have detrimental effects on the material bifurcation. Nevertheless, material stability can be promoted by any means of depressing void damage or alleviating stress, even locally across the thickness. Besides, the peculiar behaviour of material bifurcation under slight biaxiality state is demonstrated. Copyright (C) 1996 Elsevier Science Ltd
A new expression of hardening coefficients for fcc-crystal and calibration of the material constants
Resumo:
In order to describe the effect of latent hardening on the macro-plastic behavior of foc-crystal, a new expression for hardening coefficient is proposed in which there are 12 material constants, each having clear physical meaning. And a method of material constant calibration is suggested and used to determine the material constants of copper and aluminum crystal. The simulated load-elongation curves along various crystallographic orientations are comparable with the experimental ones.
Resumo:
It is shown that the variable power singularity of the strain field at the crack tip can be obtained by the simple technique of collapsing quadrilateral isoparametric elements into triangular elements around the crack tip and adequately shifting the side-nodes adjacent to this crack tip. The collapsed isoparametric elements have the desired singularity at crack tip along any ray. The strain expressions for a single element have been derived and in addition to the desired power singularity, additional singularities are revealed. Numerical examples have shown that triangular elements formed by collapsing one side lead to excellent results.
Resumo:
This paper presents an asymptotic analysis of the near-tip stress and strain fields of a sharp V-notch in a power law hardening material. First, the asymptotic solutions of the HRR type are obtained for the plane stress problem under symmetric loading. It is found that the angular distribution function of the radial stress sigma(r) presents rapid variation with the polar angle if the notch angle beta is smaller than a critical notch angle; otherwise, there is no such phenomena. Secondly, the asymptotic solutions are developed for antisymmetric loading in the cases of plane strain and plane stress. The accurate calculation results and the detailed comparisons are given as well. All results show that the singular exponent s is changeable for various combinations of loading condition and plane problem.
Resumo:
Examined in this work is the anti-plane stress and strain near a crack in a material that softens beyond the elastic peak and unloads on a linear path through the initial state. The discontinuity in the constitutive relation is carried into the analysis such that one portion of the local solution is elliptic in character and the other hyperbolic. Material elements in one region may cross over to another as the loading is increased. Local unloading can thus prevail. Presented are the inhomogeneous character of the asymptotic stress and strain in the elliptic and hyperbolic region, in addition to the region in which the material elements had experienced unloading. No one single stress or strain coefficient would be adequate for describing crack instability.