971 resultados para Sequential Monte Carlo methods
Resumo:
In this work, we introduce a new class of numerical schemes for rarefied gas dynamic problems described by collisional kinetic equations. The idea consists in reformulating the problem using a micro-macro decomposition and successively in solving the microscopic part by using asymptotic preserving Monte Carlo methods. We consider two types of decompositions, the first leading to the Euler system of gas dynamics while the second to the Navier-Stokes equations for the macroscopic part. In addition, the particle method which solves the microscopic part is designed in such a way that the global scheme becomes computationally less expensive as the solution approaches the equilibrium state as opposite to standard methods for kinetic equations which computational cost increases with the number of interactions. At the same time, the statistical error due to the particle part of the solution decreases as the system approach the equilibrium state. This causes the method to degenerate to the sole solution of the macroscopic hydrodynamic equations (Euler or Navier-Stokes) in the limit of infinite number of collisions. In a last part, we will show the behaviors of this new approach in comparisons to standard Monte Carlo techniques for solving the kinetic equation by testing it on different problems which typically arise in rarefied gas dynamic simulations.
Resumo:
O prognóstico da perda dentária é um dos principais problemas na prática clínica de medicina dentária. Um dos principais fatores prognósticos é a quantidade de suporte ósseo do dente, definido pela área da superfície radicular dentária intraóssea. A estimação desta grandeza tem sido realizada por diferentes metodologias de investigação com resultados heterogéneos. Neste trabalho utilizamos o método da planimetria com microtomografia para calcular a área da superfície radicular (ASR) de uma amostra de cinco dentes segundos pré-molares inferiores obtida da população portuguesa, com o objetivo final de criar um modelo estatístico para estimar a área de superfície radicular intraóssea a partir de indicadores clínicos da perda óssea. Por fim propomos um método para aplicar os resultados na prática. Os dados referentes à área da superfície radicular, comprimento total do dente (CT) e dimensão mésio-distal máxima da coroa (MDeq) serviram para estabelecer as relações estatísticas entre variáveis e definir uma distribuição normal multivariada. Por fim foi criada uma amostra de 37 observações simuladas a partir da distribuição normal multivariada definida e estatisticamente idênticas aos dados da amostra de cinco dentes. Foram ajustados cinco modelos lineares generalizados aos dados simulados. O modelo estatístico foi selecionado segundo os critérios de ajustamento, preditibilidade, potência estatística, acurácia dos parâmetros e da perda de informação, e validado pela análise gráfica de resíduos. Apoiados nos resultados propomos um método em três fases para estimação área de superfície radicular perdida/remanescente. Na primeira fase usamos o modelo estatístico para estimar a área de superfície radicular, na segunda estimamos a proporção (decis) de raiz intraóssea usando uma régua de Schei adaptada e na terceira multiplicamos o valor obtido na primeira fase por um coeficiente que representa a proporção de raiz perdida (ASRp) ou da raiz remanescente (ASRr) para o decil estimado na segunda fase. O ponto forte deste estudo foi a aplicação de metodologia estatística validada para operacionalizar dados clínicos na estimação de suporte ósseo perdido. Como pontos fracos consideramos a aplicação destes resultados apenas aos segundos pré-molares mandibulares e a falta de validação clínica.
Resumo:
The goal of Vehicle Routing Problems (VRP) and their variations is to transport a set of orders with the minimum number of vehicles at least cost. Most approaches are designed to solve specific problem variations independently, whereas in real world applications, different constraints are handled concurrently. This research extends solutions obtained for the traveling salesman problem with time windows to a much wider class of route planning problems in logistics. The work describes a novel approach that: supports a heterogeneous fleet of vehicles dynamically reduces the number of vehicles respects individual capacity restrictions satisfies pickup and delivery constraints takes Hamiltonian paths (rather than cycles) The proposed approach uses Monte-Carlo Tree Search and in particular Nested Rollout Policy Adaptation. For the evaluation of the work, real data from the industry was obtained and tested and the results are reported.
Resumo:
Statistical methodology is proposed for comparing molecular shapes. In order to account for the continuous nature of molecules, classical shape analysis methods are combined with techniques used for predicting random fields in spatial statistics. Applying a modification of Procrustes analysis, Bayesian inference is carried out using Markov chain Monte Carlo methods for the pairwise alignment of the resulting molecular fields. Superimposing entire fields rather than the configuration matrices of nuclear positions thereby solves the problem that there is usually no clear one--to--one correspondence between the atoms of the two molecules under consideration. Using a similar concept, we also propose an adaptation of the generalised Procrustes analysis algorithm for the simultaneous alignment of multiple molecular fields. The methodology is applied to a dataset of 31 steroid molecules.
Resumo:
La tesi si divide in due macroargomenti relativi alla preparazione della geometria per modelli MCNP. Il primo è quello degli errori geometrici che vengono generati quando avviene una conversione da formato CAD a CSG e le loro relazioni con il fenomeno delle lost particles. Il passaggio a CSG tramite software è infatti inevitabile per la costruzione di modelli complessi come quelli che vengono usati per rappresentare i componenti di ITER e può generare zone della geometria che non vengono definite in modo corretto. Tali aree causano la perdita di particelle durante la simulazione Monte Carlo, andando ad intaccare l' integrità statistica della soluzione del trasporto. Per questo motivo è molto importante ridurre questo tipo di errori il più possibile, ed in quest'ottica il lavoro svolto è stato quello di trovare metodi standardizzati per identificare tali errori ed infine stimarne le dimensioni. Se la prima parte della tesi è incentrata sui problemi derivanti dalla modellazione CSG, la seconda invece suggerisce un alternativa ad essa, che è l'uso di Mesh non Strutturate (UM), un approccio che sta alla base di CFD e FEM, ma che risulta innovativo nell'ambito di codici Monte Carlo. In particolare le UM sono state applicate ad una porzione dell' Upper Launcher (un componente di ITER) in modo da validare tale metodologia su modelli nucleari di alta complessità. L'approccio CSG tradizionale e quello con UM sono state confrontati in termini di risorse computazionali richieste, velocità, precisione e accuratezza sia a livello di risultati globali che locali. Da ciò emerge che, nonostante esistano ancora alcuni limiti all'applicazione per le UM dovuti in parte anche alla sua novità, vari vantaggi possono essere attribuiti a questo tipo di approccio, tra cui un workflow più lineare, maggiore accuratezza nei risultati locali, e soprattutto la possibilità futura di usare la stessa mesh per diversi tipi di analisi (come quelle termiche o strutturali).
Resumo:
The electronic properties of liquid ammonia are investigated by a sequential molecular dynamics/quantum mechanics approach. Quantum mechanics calculations for the liquid phase are based on a reparametrized hybrid exchange-correlation functional that reproduces the electronic properties of ammonia clusters [(NH(3))(n); n=1-5]. For these small clusters, electron binding energies based on Green's function or electron propagator theory, coupled cluster with single, double, and perturbative triple excitations, and density functional theory (DFT) are compared. Reparametrized DFT results for the dipole moment, electron binding energies, and electronic density of states of liquid ammonia are reported. The calculated average dipole moment of liquid ammonia (2.05 +/- 0.09 D) corresponds to an increase of 27% compared to the gas phase value and it is 0.23 D above a prediction based on a polarizable model of liquid ammonia [Deng , J. Chem. Phys. 100, 7590 (1994)]. Our estimate for the ionization potential of liquid ammonia is 9.74 +/- 0.73 eV, which is approximately 1.0 eV below the gas phase value for the isolated molecule. The theoretical vertical electron affinity of liquid ammonia is predicted as 0.16 +/- 0.22 eV, in good agreement with the experimental result for the location of the bottom of the conduction band (-V(0)=0.2 eV). Vertical ionization potentials and electron affinities correlate with the total dipole moment of ammonia aggregates. (c) 2008 American Institute of Physics.
Resumo:
There is a continuous search for theoretical methods that are able to describe the effects of the liquid environment on molecular systems. Different methods emphasize different aspects, and the treatment of both the local and bulk properties is still a great challenge. In this work, the electronic properties of a water molecule in liquid environment is studied by performing a relaxation of the geometry and electronic distribution using the free energy gradient method. This is made using a series of steps in each of which we run a purely molecular mechanical (MM) Monte Carlo Metropolis simulation of liquid water and subsequently perform a quantum mechanical/molecular mechanical (QM/MM) calculation of the ensemble averages of the charge distribution, atomic forces, and second derivatives. The MP2/aug-cc-pV5Z level is used to describe the electronic properties of the QM water. B3LYP with specially designed basis functions are used for the magnetic properties. Very good agreement is found for the local properties of water, such as geometry, vibrational frequencies, dipole moment, dipole polarizability, chemical shift, and spin-spin coupling constants. The very good performance of the free energy method combined with a QM/MM approach along with the possible limitations are briefly discussed.
Resumo:
Heterogeneous datasets arise naturally in most applications due to the use of a variety of sensors and measuring platforms. Such datasets can be heterogeneous in terms of the error characteristics and sensor models. Treating such data is most naturally accomplished using a Bayesian or model-based geostatistical approach; however, such methods generally scale rather badly with the size of dataset, and require computationally expensive Monte Carlo based inference. Recently within the machine learning and spatial statistics communities many papers have explored the potential of reduced rank representations of the covariance matrix, often referred to as projected or fixed rank approaches. In such methods the covariance function of the posterior process is represented by a reduced rank approximation which is chosen such that there is minimal information loss. In this paper a sequential Bayesian framework for inference in such projected processes is presented. The observations are considered one at a time which avoids the need for high dimensional integrals typically required in a Bayesian approach. A C++ library, gptk, which is part of the INTAMAP web service, is introduced which implements projected, sequential estimation and adds several novel features. In particular the library includes the ability to use a generic observation operator, or sensor model, to permit data fusion. It is also possible to cope with a range of observation error characteristics, including non-Gaussian observation errors. Inference for the covariance parameters is explored, including the impact of the projected process approximation on likelihood profiles. We illustrate the projected sequential method in application to synthetic and real datasets. Limitations and extensions are discussed. © 2010 Elsevier Ltd.
Resumo:
Objective: The Assessing Cost-Effectiveness - Mental Health (ACE-MH) study aims to assess from a health sector perspective, whether there are options for change that could improve the effectiveness and efficiency of Australia's current mental health services by directing available resources toward 'best practice' cost-effective services. Method: The use of standardized evaluation methods addresses the reservations expressed by many economists about the simplistic use of League Tables based on economic studies confounded by differences in methods, context and setting. The cost-effectiveness ratio for each intervention is calculated using economic and epidemiological data. This includes systematic reviews and randomised controlled trials for efficacy, the Australian Surveys of Mental Health and Wellbeing for current practice and a combination of trials and longitudinal studies for adherence. The cost-effectiveness ratios are presented as cost (A$) per disability-adjusted life year (DALY) saved with a 95% uncertainty interval based on Monte Carlo simulation modelling. An assessment of interventions on 'second filter' criteria ('equity', 'strength of evidence', 'feasibility' and 'acceptability to stakeholders') allows broader concepts of 'benefit' to be taken into account, as well as factors that might influence policy judgements in addition to cost-effectiveness ratios. Conclusions: The main limitation of the study is in the translation of the effect size from trials into a change in the DALY disability weight, which required the use of newly developed methods. While comparisons within disorders are valid, comparisons across disorders should be made with caution. A series of articles is planned to present the results.
Resumo:
1. There are a variety of methods that could be used to increase the efficiency of the design of experiments. However, it is only recently that such methods have been considered in the design of clinical pharmacology trials. 2. Two such methods, termed data-dependent (e.g. simulation) and data-independent (e.g. analytical evaluation of the information in a particular design), are becoming increasingly used as efficient methods for designing clinical trials. These two design methods have tended to be viewed as competitive, although a complementary role in design is proposed here. 3. The impetus for the use of these two methods has been the need for a more fully integrated approach to the drug development process that specifically allows for sequential development (i.e. where the results of early phase studies influence later-phase studies). 4. The present article briefly presents the background and theory that underpins both the data-dependent and -independent methods with the use of illustrative examples from the literature. In addition, the potential advantages and disadvantages of each method are discussed.
Resumo:
Extreme value theory (EVT) deals with the occurrence of extreme phenomena. The tail index is a very important parameter appearing in the estimation of the probability of rare events. Under a semiparametric framework, inference requires the choice of a number k of upper order statistics to be considered. This is the crux of the matter and there is no definite formula to do it, since a small k leads to high variance and large values of k tend to increase the bias. Several methodologies have emerged in literature, specially concerning the most popular Hill estimator (Hill, 1975). In this work we compare through simulation well-known procedures presented in Drees and Kaufmann (1998), Matthys and Beirlant (2000), Beirlant et al. (2002) and de Sousa and Michailidis (2004), with a heuristic scheme considered in Frahm et al. (2005) within the estimation of a different tail measure but with a similar context. We will see that the new method may be an interesting alternative.
Resumo:
Least Squares estimators are notoriously known to generate sub-optimal exercise decisions when determining the optimal stopping time. The consequence is that the price of the option is underestimated. We show how variance reduction methods can be implemented to obtain more accurate option prices. We also extend the Longsta¤ and Schwartz (2001) method to price American options under stochastic volatility. These are two important contributions that are particularly relevant for practitioners. Finally, we extend the Glasserman and Yu (2004b) methodology to price Asian options and basket options.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Oscillations have been increasingly recognized as a core property of neural responses that contribute to spontaneous, induced, and evoked activities within and between individual neurons and neural ensembles. They are considered as a prominent mechanism for information processing within and communication between brain areas. More recently, it has been proposed that interactions between periodic components at different frequencies, known as cross-frequency couplings, may support the integration of neuronal oscillations at different temporal and spatial scales. The present study details methods based on an adaptive frequency tracking approach that improve the quantification and statistical analysis of oscillatory components and cross-frequency couplings. This approach allows for time-varying instantaneous frequency, which is particularly important when measuring phase interactions between components. We compared this adaptive approach to traditional band-pass filters in their measurement of phase-amplitude and phase-phase cross-frequency couplings. Evaluations were performed with synthetic signals and EEG data recorded from healthy humans performing an illusory contour discrimination task. First, the synthetic signals in conjunction with Monte Carlo simulations highlighted two desirable features of the proposed algorithm vs. classical filter-bank approaches: resilience to broad-band noise and oscillatory interference. Second, the analyses with real EEG signals revealed statistically more robust effects (i.e. improved sensitivity) when using an adaptive frequency tracking framework, particularly when identifying phase-amplitude couplings. This was further confirmed after generating surrogate signals from the real EEG data. Adaptive frequency tracking appears to improve the measurements of cross-frequency couplings through precise extraction of neuronal oscillations.