1000 resultados para Seqüências (Matemática)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese analisa os efeitos na aprendizagem, a partir de uma proposta pedagógica que integra uma metodologia de intervenção apoiada por recursos tecnológicos. A proposta pedagógica é implementada em ambiente virtual de aprendizagem e se destina à realização de estudos complementares, para alunos reprovados em disciplinas iniciais de matemática em cursos de graduação. A metodologia de intervenção é inspirada no método clínico de Jean Piaget e visa identificar noções já construídas, propor desafios, possibilitar a exploração dos significados e incentivar a argumentação lógica dos estudantes. O ambiente de interação é constituído por ferramentas tecnológicas capazes de sustentar interações escritas, numéricas, algébricas e geométricas. A Teoria da Equilibração de Piaget possibilita a análise de ações e reflexões dos estudantes diante dos desafios propostos. São identificados desequilíbrios cognitivos e processos de reequilibração advindos das interações com os objetos matemáticos. A transformação de um saber-fazer para um saber-explicar é considerada indicativo de aprendizagem das noções pesquisadas e decorre de um desenvolvimento das estruturas de pensamento. Além da análise de processos de reequilibração cognitiva, analisou-se o aproveitamento dos estudantes, considerando os graus de aprendizagem definidos nos critérios de certificação dos desempenhos. Os resultados indicam que as interações promovidas com a estratégia pedagógica proposta colaboraram para a aprendizagem de noções e conceitos matemáticos envolvidos nas atividades de estudo. A análise do processo de equilibração permite identificar a aprendizagem como decorrência do desenvolvimento de estruturas cognitivas. O movimento das aprendizagens revelou processos progressivos de aquisição de sentido dos objetos matemáticos, com graus que expressaram condutas de regulação. Estas permitiram ultrapassar um fazer instrumental, por aplicação de fórmulas ou regras, e avançar por um fazer reflexivo sobre os significados dos conceitos envolvidos. A pesquisa sugere a implementação da proposta como estratégia pedagógica na proposição de ambientes de aprendizagem para a educação matemática a distância e como apoio ao ambiente presencial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho estuda o movimento de renovação do ensino da matemática conhecido como o "movimento da matemática moderna",surgido no Brasil no inicio dos anos 60. Através do estudo da ação, do discurso e do pensamento dos protagonistas em relação com o contexto histórico em que foram produzidos e com o movimento da matemática moderna de âmbito internacional, procura explicar o alcance e as limitações desse movimento, em sua dinâmica e elaboração pedagógica. A abordagem adotada considera tanto os aspectos do movimento que o identificam com um processo mais amplo e de âmbito mundial de crescente valorização do ensino das ciências naturais e da matemática no período que sucedeu à Segunda Guerra Mundial, no qual o movimento da matemática se insere, como as especificidades do movimento relacionadas com a ação dos protagonistas e a realidade do pais. A análise do movimento como ocorreu no Brasil é feita fundamentalmente a partir da leitura de documentos produzidos durante o periodo de sua existência e de depoimentos obtidos através de entrevistas semi-estruturadas com participantes do movimento. O contexto no qual é situada essa análise inclui uma descrição breve da realidade politica, econômica e social do pais, com ênfase na realidade educacional - em particular, do ensino secundário e nos debates pedagógicos produzidos no período As modificações nas relações entre ciência e produção material no âmbito da economia capitalista são tratadas como elemento decisivo para a explicação da combinação entre esforços de governos e de educadores para a renovação e melhoria do ensino da matemática, desde os anos 50, em vários paises. O trabalho apresenta, em suas conclusões, conexões que contribuem para a clarificação de como o movimento foi marcado pelo contexto histórico em que surgiu e se desenvolveu. São enfatizadas as relações entre: o crescimento e a modernização da economia brasileira e o otimismo acerca das consequências sociais da melhoria do ensino e do desenvolvimento da ciência no pais; a expansão do ensino secundário desde os anos 30, acelerada nos anos 60, e as preocupações dos educadores acerca da eficiência e da deselitização desse ensino. O trabalho aponta, também, as conexães entre o movimento da matemática moderna e os debates sobre ensino de matemática realizados no pais antes e depois do movimento, situando-o como momento de um processo iniciado nos anos 50, anos 80, de iniciativa dos professores de matemática em torno da reflexão e renovação de sua própria prática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O elemento transponível hobo pode estar presente sob três formas no genoma de Drosophila simulans: como cópias autônomas completas (ou canônicas), como cópias defectivas internamente deletadas e como seqüências relacionadas a hobo (ou “relics”). Algumas evidências indicam que cópias completas e internamente deletadas são aquisições recentes desse genoma, enquanto os “relics” são componentes antigos, normalmente degenerados, defectivos e até recentemente considerados imóveis. O estudo desse tipo de seqüências pode ajudar a desvendar algumas questões sobre sua origem, dinâmica e seu papel na história evolutiva da família hobo. No presente trabalho, buscamos contribuir ao entendimento de algumas dessas questões estudando a dinâmica de uma família particular de seqüências relacionadas a hobo de D. simulans. Primeiramente, isolamos uma seqüência “relic” hobo envolvida no surgimento de uma mutação white de novo em uma linhagem hipermutável de D. simulans. Esta seqüência, denominada hobov-a, apresenta divergência típica de elemento “relic” em relação ao elemento canônico, é defectiva como outras já descritas, porém, mobilizável, pois apresentando estruturas essenciais para mobilização bem conservadas. Além disso, apresenta alta similaridade estrutural e de seqüência com um elemento “relic” de Drosophila sechellia, mas parece estar ausente do genoma de Drosophila melanogaster. A análise populacional de hobov-a revela que estes elementos são bem conservados entre diferentes populações de D. simulans. Apresentam, ainda, polimorfismo de sítios de inserção e variabilidade no número de cópias, o que nos dá fortes indícios de atividade atual ou recente desses elementos no genoma dessas populações. Pela similaridade compartilhada com elementos MITEs em muitas de suas características estruturais e funcionais, sugerimos, apontando algumas evidências, que elementos hobov-a podem ser ou uma nova família de MITEs de Drosophila ou, mais provavelmente, estariam se encaminhando para esse destino, utilizando o elemento canônico como fonte para sua mobilização.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo realizado no Curso de Formação de Professores de Matemática da Universidade do Estado do Pará- UEPA, teve como finalidade verificar o obstáculo epistemológico, encontrado na aplicabilidade da linguagem matemática em sistemas físicos, através da relação existente entre as dificuldades dos licenciandos em Matemática na aprendizagem de Física Clássica e a prática da Matemática como linguagem nas disciplinas específicas do curso de Matemática, e as possíveis conseqüências à futura prática pedagógica desses professores, no nível fundamental e médio. Para desenvolvê-lo recorri à pesquisa qualitativa em uma abordagem etnográfica. Delimitei como sujeitos da pesquisa 15 alunos de uma turma do 3° ano que cursavam a disciplina Física Geral do Curso de Licenciatura Plena em Matemática no ano de 2000 para obter os dados necessários. Observei os alunos durante as aulas e seminários realizados e os entrevistei em busca de subsídios para o estudo.Concluo que há relação entre a dificuldade na aprendizagem da Física Clássica e a prática da Matemática como linguagem nas disciplinas específicas do Curso de Licenciatura Plena em Matemática e a futura prática pedagógica no ensino fundamental e médio. Concluo também que falta aos professores que ministram estas disciplinas superar um obstáculo epistemológico em relação ao conhecimento matemático, isto é, uma prática consistente e articulada à teoria e prática da linguagem matemática. Ao final, indico referenciais para possíveis mudanças no Curso e espero que essas mudanças contribuam para uma aprendizagem significativa na formação de futuros professores de Matemática nas universidades comprometidas com a formação do licenciado em Matemática ou naquelas que fazem uso da própria Matemática.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A textura é um atributo ainda pouco utilizado no reconhecimento automático de cenas naturais em sensoriamento remoto, já que ela advém da sensação visual causada pelas variações tonais existentes em uma determinada região da imagem, tornando difícil a sua quantificação. A morfologia matemática, através de operações como erosão, dilatação e abertura, permite decompor uma imagem em elementos fundamentais, as primitivas texturais. As primitivas texturais apresentam diversas dimensões, sendo possível associar um conjunto de primitivas com dimensões semelhantes, em uma determinada classe textural. O processo de classificação textural quantifica as primitivas texturais, extrai as distribuições das dimensões das mesmas e separa as diferentes distribuições por meio de um classificador de máxima-verossimilhança gaussiana. O resultado final é uma imagem temática na qual cada tema representa uma das texturas existentes na imagem original.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho tem por finalidade a aplicaçao de principios teóricos e experimentais de Jean Piaget ao ensino da matemática. Considerando-se as implicações educacionais da teoria, fizemos uma proposta de sistematizar uma metodologia de ensino que tem por fim a ativaçao das estruturas mentais pelo ensino da matemática. Este trabalho, em resumo, constitui uma sintese da teoria do desenvolvimento cognitivo de Piaget, e o relato de uma pesquisa experimental que teve por fim avaliar os efeitos de uma metodologia proposta para estruturas mentais na criança. Com esta finalidade, foram urilizados dois grupos de trabalho constituídos intencionalmente, um experimental e o outro de controle, ambos com 21 sujeitos, alunos da 2a série do 1o grau de escolas particulares da cidade de Goiainia (GO), de classe social média supeior e média inferior. Em ambos os grupos se realizou o pré-teste. A metodologia de ensino de fundamentação piagetiana foi utilizada para o ensino da matemática no grupo experimental, e no grupo de controle utilizou-se para o ensino da matemática uma metodologia considerada tradicional, durante o período de um semestre letivo. Após o trabalho, foi realizado o pós-teste em ambos os grupos e, um estudo comparativo dos resultados coletados permitiu verificar a eficiência da metodologia de ensino proposta e a fecundidade do ensino da matemática numa perspectiva piagetiana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este estudo trata das dificuldades que os professores de matemática encontram na sua prática diária de sala de aula, dificuldades estas que sempre existiram e parecem persistir apesar das tentativas de solucioná-las. O trabalho desenvolveu-se através de entrevistas, ob servações de aulas e reuniões de área. Os maiores problemas apontados foram: formação do professor, conteúdo programático, aprendizagem, avaliação e dificuldades dos alunos. Cada um destes itens foi aprofundado sempre que necessario. Procurou-se esclarecer todos e com isto encontrar caminhos. Após caracterizá-los, passou-se às dificuldades dos alunos; são enfocadas apenas as mais significativas, segundo os professores. Foi aplicado um teste onde muitas delas se confirmaram. Concluiu-se que a prática da matemática em nossas escolas continua ineficiente. O seu ensino não acompanha as necessidades da sociedade, os professores tendem a abandonar a profissão por causa dos baixos salários, os alunos são reprovados em massa e abandonam seus estudos, os livros apenas acrescentam ou retiram conteúdos, as escolas continuam formando alunos passivos e pouco criticos em relação à matemáti ca. Muitas tentativas ainda serão feitas mas nao se pode contar com a certeza do retorno porque o professor não é valorizado e nem ouvido quando se trata de apresentar propostas. Os poucos resultados positivos observados partiram deles que sempre procuram soluções práticas e não dispendiosas para resolver seus problemas. Finalizando o trabalho foram apresentadas sugestões dos professores e se acredita que muitas produzem resultado positivo em pouco tempo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta tese tem o objetivo de mostrar que o sujeito aprendente, ao se deparar com um conceito matemático já construído por ele, pode, em outro contexto, atribuir-lhe novos sentidos e re-significá-lo. Para tanto, a investigação se apóia em duas teorias filosóficas: a filosofia de Immanuel Kant e a filosofia de Ludwig Wittgenstein. Também buscamos subsídios teóricos em autores contemporâneos da filosofia da matemática, tais como Gilles-Gaston Granger, Frank Pierobon, Maurice Caveing e Marco Panza. No decorrer do processo da aprendizagem, o conceito matemático está sempre em estado de devir, na perspectiva do aluno, mesmo que este conceito seja considerado imutável sob o ponto de vista da lógica e do rigor da Matemática. Ao conectar o conceito com outros conceitos, o sujeito passa a reinterpretá-lo e, a partir desta outra compreensão, ele o reconstrói. Ao atribuir sentidos em cada ato de interpretação, o conceito do objeto se modifica conforme o contexto. As estruturas sintáticas semelhantes, em que figura o objeto, e as aparências semânticas provenientes da polissemia da linguagem oferecem material para as analogias entre os conceitos. As conjeturas nascidas destas analogias têm origem nas representações do objeto percebido, nas quais estão de acordo com a memória e a imaginação do sujeito aprendente. A imaginação é a fonte de criação e sofre as interferências das ilusões provenientes do ato de ver, já que o campo de visão do aluno está atrelado ao contexto no qual se encontra o objeto. A memória, associada às experiências vividas com o objeto matemático e à imaginação, oferece condições para a re-significação do conceito. O conceito antes de ser interpretado pelo aluno obedece às exigências e à lógica da matemática, após a interpretação depende da própria lógica do aluno. A modificação do conceito surge no momento em que o sujeito, ao interpretar a regra matemática, estabelece novas regras forjadas durante o processo de sua aplicação. Na contingência, o aluno projeta sentidos aos objetos matemáticos (que têm um automovimento previsto), porém a sua imaginação inventiva é imprevisível. Nestas circunstâncias, o conceito passa a ser reconstruível a cada ato de interpretação. As condições de leitura e de compreensão do objeto definem a construção do conceito matemático, a qual está em constante mudança.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho de tese tem por objetivo ampliar o alcance e aplicação de mapas SODA, preservando a metodologia originalmente desenvolvida. Inicialmente é realizada uma revisão do método, abordando de forma conjunta os artigos seminais, a teoria psicológica de Kelly e a teoria dos grafos; e ao final propomos uma identidade entre construtos de mapas SODA com os conhecimentos tácitos e explícitos, da gestão do conhecimento (KM). Essa sequencia introdutória é completada com uma visão de como os mapas SODA tem sido aplicado. No estágio seguinte o trabalho passa a analisar de forma crítica alguns pontos do método que dão margens a interpretações equivocadas. Sobre elas passamos a propor a aplicação de teorias, de diversos campos, tais como a teoria de means-end (Marketing), a teoria da atribuição e os conceitos de atitude (Psicologia), permitindo inferências que conduzem à proposição da primeira tese: mapas SODA são descritores de atitudes. O próximo estágio prossegue analisando criticamente o método, e foca no paradigma estabelecido por Eden, que não permite conferir ao método o status de descritor de comportamento. Propomos aqui uma mudança de paradigma, adotando a teoria da ação comunicativa, de Habermas, e sobre ela prescrevemos a teoria da ação e da escada da inferência (Action Science) e uma teoria da emoção (neuro ciência), o que permite novas inferências, que conduzem à proposição da segunda tese: mapas SODA podem descrever comportamentos. Essas teses servem de base para o alargamento de escopos do método SODA. É proposta aqui a utilização da teoria de máquinas de estado finito determinístico, designadas por autômato. Demonstramos um mapeamento entre autômato com mapas SODA, obtendo assim o autômato SODA, e sobre ele realizamos a última contribuição, uma proposta de mapas SODA hierárquicos, o que vem a possibilitar a descrição de sequencias de raciocínio, ordenando de forma determinística atitudes e comportamentos, de forma estruturada. A visão de como ela pode ser aplicada é realizada por meio de estudo de caso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A teoria do custo padrão ressente-se de um tratamento matemático, como o que aqui é proposto. Conforme foi salientado no início, este tratamento matemático, embora substancialmente simples, é todavia absolutamente rigoroso e também é completo quando visto do prisma que se adotou. Modelamos a distinção necessariamente explícita entre a produção contínua e a produção descreta, através do uso dos modelos algébricos a dois e três fatores, respectivamente. Unificamos de uma maneira sitemática a abordagem dos três elementos básicos do custo, simplificando de um lado e generalizando do outro. Esta unificação levou aos elementos diretos também, como deve ser, todo o rigorismo analítico do elemento indireto. Ampliou-see a estreita visão das variações de preço e quantidade com a consideração da variação de unidades, qua acarretou automaticamente a substituição do conceito de variação total pelo de variação total orçamentária. A modelagem algébrica não tem a vantagem da visualidade que a modelagem gráfica oferece, mas tem, por outro lado, a superioridade que a generalização apresente. Com efeito, foi a generalização das definições das variações que permitiu os resultados obtidos, aqui resumidos. Mas as razões do método gráfico são também apreciáveis.Assim, o desdobramento da variação total em variação de preço e variação de quantidade é ainda mais ressaltada pelo método gráfico, no qual se vê a variação de quantidade como o resultado de um deslocamento horizontal do ponto cuja abcissa é a quantidade e cuja ordenada é o custo total. Também a variação de preço lá aparece como o resultado da variação do coeficiente angular da reta do custo. Implicando em um deslocamento do ponto representativo da produção. Graficamente também se vê a análise das variações de preço e quantidade nas suas componentes pura e mista.Finalmente os modelos tabulares para os sistemas de produção discreto e contínuo apresentam da maneira mais simples possível todas as variações e seus respectivos custos analisadores. A forma tabular é a mais apreciada pelo administrador prático, pouco efeito à algebra e a geometria. Já o mesmo não se pode dizer do desdobramento, feito por muitos autores, da variação de preço em variação de capacidade e variação de orçamento. Da variação de capacidade já se evidenciou a inadequação do nome, dado que ela não é função da variação de preço. Isto não é mera questão teminológica. A terminologia apenas traz à luz a essência da dificuldade. E nossa proposição que este desdobramento seja descartado por ser totalmente sem significação, mesmo para o elemento indireto, para o qual foi proposto. Esta consideração é importante para a consideração da variação das unidades. Assim, introduzido o orçamento na análise das variaçãoes, a variação de orçamento que verdadeiramente merece este nome é a variação total orçamentária, ou seja, a diferença entre o custo efetivo e o custo orçado, a qual inclui como suas componentes a variação de unidades, a variação da quantidade e a variação de preço. O que é importante na análise da variação de preço é a consideração de variação mista de preço e de quantidade. Foi dado bastante destaque a este desdobramento com a apresentação de mais de um método para o tratamento analítico do desdobramento. Também foi devidamente ressaltada a questão das responsabilidades administrativas derivadas da variação mista

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A teoria de custo padrão ressente-se de um tratamento matemático, como o que aqui é proposto. Conforme foi salientado no início, este tratamento matemático, embora substancialmente simples, é todavia absolutamente rigoroso e também é completo quando visto do prisma que se adotou. Modelamos a distinção necessariamente explícita entre a produção contínua e a produção discreta, através do uso dos modelos algébricos a dois e três fatores, respectivamente. Unificamos de uma maneira sistemática a abordagem dos três elementos básicos do custo, simplificando de um lado e generalizando do outro. Esta unificação levou aos elementos diretos, como deve ser, todo o rigorismo analítico do elemento indireto. Ampliou-se a estreita visão das variaçoes de preço e quantidade com a consideração da variação de unidades, que acarretou automaticamente a substituição do conceito de variação total pelo de variação total orçamentária

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A superfamília das fosfolipases A2 (FLA2) é composta por proteínas dotadas de propriedades diferenciadas que as tornam capazes de apresentar distintas atividades biológicas, além de sua atividade catalítica. Esta diversidade funcional é intrigante devido à alta similaridade de seqüência primária e de estrutura entre essas proteínas. O principal objetivo deste trabalho é o desenvolvimento de uma metodologia para a predição de atividades biológicas específicas em FLA2 de peçonha de serpentes a partir da análise de seqüências primárias. A metodologia desenvolvida compreende: a) seleção de seqüências anotadas quanto à função ou atividade biológica que desempenham; b) detecção e validação estatística de motivos de seqüência relacionados à atividade estudada; e c) construção de Modelos Ocultos de Markov (MOMs) representando cada motivo. MOM consiste em uma modelagem estatística que tem sido aplicada com sucesso em diversas áreas onde se faz necessária a detecção e representação de padrões de informação; por sua base matemática robusta e formal, pode ser utilizada na automação deste tipo de processo. A metodologia foi testada para duas atividades de FLA2 de peçonha de serpente: neurotoxicidade e miotoxicidade. Para as FLA2 neurotóxicas, foram detectados seis motivos conservados, dos quais três foram validados estatisticamente como sendo adequados na discriminação de seqüências neurotóxicas de não neurotóxicas. Para as FLA2 miotóxicas, foram detectados seis motivos conservados, dos quais quatro foram validados. Os MOMs dos motivos validados podem ser usados na predição de atividade neurotóxica e miotóxica. As relações entre seqüência, estrutura, função e evolução das FLA2s são discutidas. Os dados obtidos foram coerentes com a hipótese apresentada por Kini (2003), da existência de diferentes sítios farmacológicos na superfície das FLA2, interagindo independente ou cooperativamente com diferentes receptores, para gerar as diversas funções biológicas observadas. Por não haver, até o momento, qualquer ferramenta automatizada para a predição de função biológica de FLA2, os resultados deste trabalho foram a base para a construção de uma ferramenta (disponível em www.cbiot.ufrgs.br/bioinfo/phospholipase) para a identificação de miotoxicidade e neurotoxicidade em FLA2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A presente dissertação estuda relações entre o processo de aprendizagem de Matemática e o perfil do sujeito da Sociedade em Rede a partir das interações registradas na Lista de Discussão de e-mail da disciplina de Computador na Matemática Elementar do curso de Licenciatura em Matemática da Universidade Federal do Rio Grande do Sul. Os processos sócio-cognitivos dos licenciandos são analisados para investigar a hipótese de que aprender Matemática com o uso das Tecnologias da Informação contribui para a formação do sujeito da Sociedade em Rede. Estão presentes autores como Manuel Castells, Pierre Lévy e Edgar Morin, que participam da configuração dos novos paradigmas da Sociedade em Rede; Jean Piaget, Antonio Battro e Seymour Papert que, dentro da perspectiva da Epistemologia e da Psicologia Genéticas, contribuem para o estudo da aprendizagem; e Jean-Blaise Grize, que analisa os processos de comunicação Seus aportes teóricos nos permitem entrelaçar as áreas de conhecimento de Psicologia Social e Institucional, Educação (Instituição Escolar) e Matemática. A análise de uma proposta didática apoiada na utilização de Tecnologias da Informação (software Super Logo e Lista de Discussão) nos permite observar o movimento de transição de uma postura passiva, receptora de informações, para uma postura ativa, produtora de conhecimento na qual os sujeitos foram desenvolvendo atitudes, habilidades e competências para detectar e formular problemas, pensá-los sob diferentes perspectivas e equacioná-los; buscar e implementar as melhores soluções; testar e avaliar as soluções encontradas; contextualizar e questionar os caminhos escolhidos para solucionar desafios; operar com os conhecimentos, processá-los e integrá-los em novos sistemas de significação; e saber trabalhar em equipe, tendo disposição para ouvir, contribuir e produzir no e para o grupo.