711 resultados para Science teaching
Resumo:
Reflections on the university campus usually focus on its relevancy as a research and teaching area; however, the need for preservation, protection, maintenance and cleaning only become visible in the event of inadequacy or lack thereof. The aim of this study is to address the characteristics of the preservation and security measures performed at the Science and Technology Park of the University of São Paulo (Parque de Ciência e Tecnologia da Universidade de São Paulo), agency subjected to the Dean’s Office for Culture and University Extension (Pró-Reitoria de Cultura e Extensão Universitária). Because of its history and location, the Park requires special care. The Park’s land formerly housed the Astronomical Observatory of São Paulo and the Institute of Astronomy and Geophysics of the University of São Paulo (Instituto de Astronomia e Geofísica – IAG-USP), within the Fontes do Ipiranga State Park (Parque Estadual das Fontes do Ipiranga – PEFI), in the city of São Paulo. Preservation and reconversion activities relative to historical buildings are developed at the Park. The institution’s location and its specificities require security in its borders, as well as in relation to the users of the park.
Resumo:
The "4-stage approach" has been widely accepted for practical skill training replacing the traditional 2 stages ("see one, do one"). However, the superior effectiveness of the 4-stage approach was never proved.
Resumo:
The purpose of this study was to investigate the questioning strategies of preservice teachers whenteaching science as inquiry. The guiding questions for this research were: In what ways do the questioning strategies of preservice teachers differ for male and female elementary students when teaching science as inquiry and how is Bloom’s Taxonomy evident within the questioning strategies of preservice teachers? Examination of the data indicated that participants asked a total of 4,158 questions to their elementary aged students. Of these questions, 974 (23%) were asked to boys, and 991 (24%) were asked to girls. The remaining questions (53%) were asked to the class as a whole, therefore no gender could be assigned to these questions. In relation to Bloom’s Taxonomy, 74% of the questions were basic knowledge, 15% were secondary comprehension, 2% were application, 4% were analysis, 1% were synthesis, and 3% were evaluation.
Resumo:
Unique as snowflakes, learning communities are formed in countless ways. Some are designed specifically for first-year students, while others offer combined or clustered upper-level courses. Most involve at least two linked courses, and some add residential and social components. Many address core general education and basic skills requirements. Learning communities differ in design, yet they are similar in striving to enhance students' academic and social growth. First-year learning communities foster experiences that have been linked to academic success and retention. They also offer unique opportunities for librarians interested in collaborating with departmental faculty and enhancing teaching skills. This article will explore one librarian's experiences teaching within three first-year learning communities at Buffalo State College.
Resumo:
A simple and effective demonstration to help students comprehend phase diagrams and understand phase equilibria and transformations is created using common chemical solvents available in the laboratory. Common misconceptions surrounding phase diagram operations, such as components versus phases, reversibility of phase transformations, and the lever rule are addressed. Three different binary liquid mixtures of varying compatibility create contrastive phase equilibrium cases, where colorful dyes selectively dissolved in each of corresponding phases allow for quick and unambiguous perceptions of solubility limit and phase transformations. Direct feedback and test scores from a group of students show evidence of the effectiveness of the visual and active teaching tool.
Resumo:
Background Increasing attention is being paid to improvement in undergraduate science, technology, engineering, and mathematics (STEM) education through increased adoption of research-based instructional strategies (RBIS), but high-quality measures of faculty instructional practice do not exist to monitor progress. Purpose/Hypothesis The measure of how well an implemented intervention follows the original is called fidelity of implementation. This theory was used to address the research questions: What is the fidelity of implementation of selected RBIS in engineering science courses? That is, how closely does engineering science classroom practice reflect the intentions of the original developers? Do the critical components that characterize an RBIS discriminate between engineering science faculty members who claimed use of the RBIS and those who did not? Design/Method A survey of 387 U.S. faculty teaching engineering science courses (e.g., statics, circuits, thermodynamics) included questions about class time spent on 16 critical components and use of 11 corresponding RBIS. Fidelity was quantified as the percentage of RBIS users who also spent time on corresponding critical components. Discrimination between users and nonusers was tested using chi square. Results Overall fidelity of the 11 RBIS ranged from 11% to 80% of users spending time on all required components. Fidelity was highest for RBIS with one required component: case-based teaching, just-in-time teaching, and inquiry learning. Thirteen of 16 critical components discriminated between users and nonusers for all RBIS to which they were mapped. Conclusions Results were consistent with initial mapping of critical components to RBIS. Fidelity of implementation is a potentially useful framework for future work in STEM undergraduate education.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.
Resumo:
After teaching regular education secondary mathematics for seven years, I accepted a position in an alternative education high school. Over the next four years, the State of Michigan adopted new graduation requirements phasing in a mandate for all students to complete Geometry and Algebra 2 courses. Since many of my students were already struggling in Algebra 1, getting them through Geometry and Algebra 2 seemed like a daunting task. To better instruct my students, I wanted to know how other teachers in similar situations were addressing the new High School Content Expectations (HSCEs) in upper level mathematics. This study examines how thoroughly alternative education teachers in Michigan are addressing the HSCEs in their courses, what approaches they have found most effective, and what issues are preventing teachers and schools from successfully implementing the HSCEs. Twenty-six alternative high school educators completed an online survey that included a variety of questions regarding school characteristics, curriculum alignment, implementation approaches and issues. Follow-up phone interviews were conducted with four of these participants. The survey responses were used to categorize schools as successful, unsuccessful, and neutral schools in terms of meeting the HSCEs. Responses from schools in each category were compared to identify common approaches and issues among them and to identify significant differences between school groups. Data analysis showed that successful schools taught more of the HSCEs through a variety of instructional approaches, with an emphasis on varying the ways students learned the material. Individualized instruction was frequently mentioned by successful schools and was strikingly absent from unsuccessful school responses. The main obstacle to successful implementation of the HSCEs identified in the study was gaps in student knowledge. This caused pace of instruction to also be a significant issue. School representatives were fairly united against the belief that the Algebra 2 graduation requirement was appropriate for all alternative education students. Possible implications of these findings are discussed.
Resumo:
This report shares my efforts in developing a solid unit of instruction that has a clear focus on student outcomes. I have been a teacher for 20 years and have been writing and revising curricula for much of that time. However, most has been developed without the benefit of current research on how students learn and did not focus on what and how students are learning. My journey as a teacher has involved a lot of trial and error. My traditional method of teaching is to look at the benchmarks (now content expectations) to see what needs to be covered. My unit consists of having students read the appropriate sections in the textbook, complete work sheets, watch a video, and take some notes. I try to include at least one hands-on activity, one or more quizzes, and the traditional end-of-unit test consisting mostly of multiple choice questions I find in the textbook. I try to be engaging, make the lessons fun, and hope that at the end of the unit my students get whatever concepts I‘ve presented so that we can move on to the next topic. I want to increase students‘ understanding of science concepts and their ability to connect understanding to the real-world. However, sometimes I feel that my lessons are missing something. For a long time I have wanted to develop a unit of instruction that I know is an effective tool for the teaching and learning of science. In this report, I describe my efforts to reform my curricula using the “Understanding by Design” process. I want to see if this style of curriculum design will help me be a more effective teacher and if it will lead to an increase in student learning. My hypothesis is that this new (for me) approach to teaching will lead to increased understanding of science concepts among students because it is based on purposefully thinking about learning targets based on “big ideas” in science. For my reformed curricula I incorporate lessons from several outstanding programs I‘ve been involved with including EpiCenter (Purdue University), Incorporated Research Institutions for Seismology (IRIS), the Master of Science Program in Applied Science Education at Michigan Technological University, and the Michigan Association for Computer Users in Learning (MACUL). In this report, I present the methodology on how I developed a new unit of instruction based on the Understanding by Design process. I present several lessons and learning plans I‘ve developed for the unit that follow the 5E Learning Cycle as appendices at the end of this report. I also include the results of pilot testing of one of lessons. Although the lesson I pilot-tested was not as successful in increasing student learning outcomes as I had anticipated, the development process I followed was helpful in that it required me to focus on important concepts. Conducting the pilot test was also helpful to me because it led me to identify ways in which I could improve upon the lesson in the future.
Resumo:
This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in development of tools that can support effective professional development for teachers. One tool is used during the planning stages to structure a professional development program, another set of tools supports measurement of the effectiveness of a development program, and the third tool supports sustainability of professional development programs. The Michigan Teacher Excellence Program (MiTEP), a Math/Science Partnership project funded by the National Science Foundation, served as the test bed for developing and testing these tools. The first tool, the planning tool, is the Earth Science Literacy Principles (ESLP). The ESLP served as a planning tool for the two-week summer field courses as part of the MiTEP program. The ESLP, published in 2009, clearly describe what an Earth science literate person should know. The ESLP consists of nine big ideas and their supporting fundamental concepts. Using the ESLP for planning a professional development program assisted both instructors and teacher-participants focus on important concepts throughout the professional development activity. The measurement tools were developed to measure change in teachers’ Earth science content-area knowledge and perceptions related to teaching and learning that result from participating in a professional development program. The first measurement tool, the Earth System Concept Inventory (ESCI), directly measures content-area knowledge through a succession of multiple-choice questions that are aligned with the content of the professional development experience. The second measurement, an exit survey, collects qualitative data from teachers regarding their impression of the professional development. Both the ESCI and the exit survey were tested for validity and reliability. Lesson study is discussed here as a strategy for sustaining professional development in a school or a district after the end of a professional development activity. Lesson study, as described here, was offered as a formal course. Teachers engaged in lesson study worked collaboratively to design and test lessons that improve the teachers’ classroom practices. Data regarding the impact of the lesson study activity were acquired through surveys, written documents, and group interviews. The data are interpreted to indicate that the lesson study process improved teacher quality and classroom practices. In the case described here, the lesson study process was adopted by the teachers’ district and currently serves as part of the district’s work in Professional Learning Communities, resulting in ongoing professional development throughout the district.
Resumo:
Presentation by Dr. Frank Ackerman. Additional information can be found on Montana Tech's Department of Computer Sciences website.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2004.
Resumo:
Proceedings of the Advances in Teaching & Learning Day Regional Conference held at The University of Texas Health Science Center at Houston in 2003.