716 resultados para Saïmiri erythrocytes
Resumo:
We assessed and compared host cell specificity of the haemolytic and cytotoxic activity of the RTX toxins from Actinobacillus equuli, an equine pathogen, and Actinobacillus suis, which is pathogenic for pigs. The two bacterial species are closely related, phenotypically as well as phylogenetically, sharing the same 16S rRNA gene sequence. Both species contain specific protein toxins from the family of pore-forming RTX toxins, however, the two species differ in their RTX toxin profiles. Haemolytic A. equuli contains the operon for the Aqx toxin, whereas A. suis harbours genes for ApxI and ApxII. We tested the toxic activity of the corresponding proteins on erythrocytes as well as on lymphocytes isolated from horse and pig blood. The strength of the haemolytic activity for each of the toxins was independent of the origin of erythrocytes. When testing cytotoxic activity, the Aqx protein showed a higher toxic effect for horse lymphocytes than for porcine lymphocytes. On the other hand, ApxI and ApxII showed a strong cytotoxic effect on porcine lymphocytes and a reduced toxicity for horse lymphocytes; the toxicity of ApxII was generally much lower than ApxI. Our results indicate a host species specificity of the toxic activity of RTX toxins Aqx of A. equuli and ApxI and ApxII of A. suis.
Resumo:
RTX toxins (repeats in the structural toxin) are pore-forming protein toxins produced by a broad range of pathogenic Gram-negative bacteria. In vitro, RTX toxins mostly exhibit a cytotoxic and often also a hemolytic activity. They are particularly widespread in species of the family Pasteurellaceae which cause infectious diseases, most frequently in animals but also in humans. Most RTX toxins are proteins with a molecular mass of 100-200 kDa and are post-translationally activated by acylation via a specific activator protein. The repeated structure of RTX toxins, which gave them their name, is composed of iterative glycine-rich nonapeptides binding Ca2+ on the C-terminal half of the protein. Genetic analysis of RTX toxins of various species of Pasteurellaceae and of a few other Gram-negative bacteria gave evidence of horizontal transfer of genes encoding RTX toxins and led to speculations that RTX toxins might have originated from Pasteurellaceae. The toxic activities of RTX toxins in host cells may lead to necrosis and apoptosis and the underlying detailed mechanisms are currently under investigation. The impact of RTX toxins in pathogenicity and the immune responses of the host were described for several species of Pasteurellaceae. Neutralizing antibodies were shown to significantly reduce the cytotoxic activity of RTX toxins. They constitute a valuable strategy in the development of immuno-prophylactics against several animal diseases caused by pathogenic species of Pasteurellaceae. Although many RTX toxins possess cytotoxic and hemolytic activities toward a broad range of cells and erythrocytes, respectively, a few RTX toxins were shown to have cytotoxic activity only against cells of specific hosts and/or show cell-type specificity. Further evidence exists that RTX toxins play a potential role in host specificity of certain pathogens.
Resumo:
This review is focused on the mammalian SLC11 and SLC40 families and their roles in iron homeostasis. The SLC11 family is composed of two members, SLC11A1 and SLC11A2. SLC11A1 is expressed in the lysosomal compartment of macrophages and in the tertiary granules of neutrophils, playing a key role in innate resistance against infection by intracellular microbes. SLC11A2 is a key player in iron metabolism and is ubiquitously expressed, most notably in the proximal duodenum, immature erythroid cells, brain, placenta and kidney. Intestinal iron absorption is mediated by SLC11A2 at the apical membrane of enterocytes, followed by basolateral exit via SLC40A1. To meet the daily requirement for iron, approximately 80% of the iron comes from the breakdown of hemoglobin following macrophage phagocytosis of senescent erythrocytes (iron recycling). Both SLC11A1 and SLC11A2 play an important role in macrophage iron recycling. SLC11A2 also transports iron into the cytosol across the membrane of endocytotic vesicles of the transferrin receptor-cycle. SLC40A1 is the sole member of the SLC40 family and is involved in the only cellular iron efflux mechanism described. SLC40A1 is highly expressed in several tissues and cells that play a critical role in body iron homeostasis. The signaling pathways that regulate SLC11A2 and SLC40A1 expression at transcriptional, post-transcriptional and post-translational levels are discussed. The roles of SLC11A2 and/or SLC40A1 in iron-associated disorders such as hemochromatosis, neurodegenerative diseases, and breast cancer are also summarized.
Resumo:
We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.
Resumo:
UPTAKE AND METABOLISM OF 5’-AMP IN THE ERYTHROCYTE PLAY KEY ROLES IN THE 5’-AMP INDUCED MODEL OF DEEP HYPOMETABOLISM Publication No. ________ Isadora Susan Daniels, B.A. Supervisory Professor: Cheng Chi Lee, Ph.D. Mechanisms that initiate and control the natural hypometabolic states of mammals are poorly understood. The laboratory developed a model of deep hypometabolism (DH) initiated by uptake of 5’-adenosine monophosphate (5’-AMP) into erythrocytes. Mice enter DH when given a high dose of 5’-AMP and the body cools readily. Influx of 5’-AMP appears to inhibit thermoregulatory control. In a 15°C environment, mice injected with 5’-AMP (0.5 mg/gw) enter a Phase I response in which oxygen consumption (VO2) drops rapidly to 1/3rd of euthermic levels. The Phase I response appears independent of body temperature (Tb). This is followed by gradual body temperature decline that correlates with VO2 decline, called Phase II response. Within 90 minutes, mouse Tb approaches 15°C, and VO2 is 1/10th of normal. Mice can remain several hours in this state, before gradually and safely recovering. The DH state translates to other mammalian species. Our studies show uptake and metabolism of 5’-AMP in erythrocytes causes biochemical changes that initiate DH. Increased AMP shifts the adenylate equilibrium toward ADP formation, consequently decreasing intracellular ATP. In turn, glycolysis slows, indicated by increased glucose and decreased lactate. 2,3-bisphosphoglycerate levels rise, allosterically reducing oxygen affinity for hemoglobin, and deoxyhemoglobin rises. Less oxygen transport to tissues likely triggers the DH model. The major intracellular pathway for AMP catabolism is catalyzed by AMP deaminase (AMPD). Multiple AMPD isozymes are expressed in various tissues, but erythrocytes only have AMPD3. Mice lacking AMPD3 were created to study control of the DH model, specifically in erythrocytes. Telemetric measurements demonstrate lower Tb and difficulty maintaining Tb under moderate metabolic stress. A more dramatic response to lower dose of 5’-AMP suggests AMPD activity in the erythrocyte plays an important role in control of the DH model. Analysis of adenylates in erythrocyte lysate shows 3-fold higher levels of ATP and ADP but similar AMP levels to wild-type. Taken together, results indicate alterations in energy status of erythrocytes can induce a hypometabolic state. AMPD3 control of AMP catabolism is important in controlling the DH model. Genetically reducing AMP catabolism in erythrocytes causes a phenotype of lower Tb and compromised ability to maintain temperature homeostasis.
Resumo:
Phosphatidylserine (PS) is distributed almost entirely in the inner leaflet of the erythrocyte membrane bilayer, and appears to be maintained by a 32 kDa integral membrane protein (PS translocase). The expression of PS on the outer leaflet may serve as a recognition signal for macrophages, since insertion of PS into erythrocytes enhances their adherence to macrophages and clearance from the circulation. Therefore I have hypothesized that erythroid cells display PS on their outer leaflet early in differentiation and upon aging. Analysis of murine erythroleukemia cells (MELC, undifferentiated erythroid progenitor cells) showed high levels of PS on the outer leaflet that decreased during differentiation, correlating with the pattern of macrophage adherence. The activity of the PS translocase during differentiation appears to be unchanged although the equilibrium distribution of PS differs. This difference may be due to qualitative changes in the PS translocase. $\sp{125}$I-Bolton/Hunter-labeled-pyridyldithioethylamine ($\sp{125}$I-B/H-PDA), a radiolabeled probe for the PS translocase, labeled a 32 kDa protein in mature erythrocytes whereas in MELC a 45 kDa protein as well as a 32 kDa protein was identified. The abundance of the 45 kDa protein in relation to the 32 kDa protein declined during differentiation, possibly indicating this protein was a precursor of the 32 kDa protein. Analysis of the 45 kDa protein by N-glycosidase F and endoproteinase cleavage suggested this protein was not a glycosylated form of the 32 kDa protein but appeared to share some structural homology. Aged murine erythrocytes had elevated levels of PS on their outer leaflet, as well as decreased PS translocase activity. $\sp{125}$I-B/H-PDA labeled a 32 kDa protein in both normal and aged erythrocytes. However, the latter cells also contained a 28 kDa protein. Experimental evidence suggests that the appearance of the 28 kDa protein may be due to increased oxidation of aged erythrocytes. Examination of PS distribution showed that the levels of PS on the outer leaflet were elevated early in differentiation, decreased during the mature state, and returned to high levels as the erythrocyte aged. In conclusion,the levels of outer leaflet PS correlated with the differentiation status and macrophage recognition of erythroid cells. ^
Resumo:
This dissertation presents evidence to support the hypothesis that cytoplasmic malate dehydrogenase (MDH-1) is the enzyme in humans which catalyzes the reduction of aromatic alpha-keto acids in the presence of NADH, and the enzyme which has been described in the literature as aromatic alpha-keto acid reductase (KAR; E.C. 1.1.1.96) is actually a secondary activity of cytoplasmic malate dehydrogenase.^ Purified MDH and purified KAR have the same molecular weight, subunit structure, heat-inactivation profile and tissue distribution. After starch gel electrophoresis, and using p-hydroxyphenylpyruvic acid (HPPA) as substrate, KAR activity co-migrates with MDH-1 in all species studied except some marine animals. Inhibition with malate, the end-product of malate dehydrogenase, substantially reduces or totally eliminates KAR activity. Purified cytoplasmic MDH from human erythrocytes has an alpha-keto acid reductase activity with identical mobility. All electrophoretic variants of MDH-1 seen in the fresh-water bony fish Xiphophorus, the amphibians Rana and humans exhibited identical variation for KAR, and the two traits co-segregated in the small group of offspring from one Rana heterozygote studied. Both enzymes show almost no electrophoretic variation among humans from many ethnic groups, and among several inbred strains of mice both MDH-s and KAR co-migrate with no variation. MDH-1 and KAR in mouse and Chinese hamster fibroblasts show identical mobility differences between species. Antisera raised against purified chicken cytoplasmic MDH totally inhibited both MDH-1 and KAR in chickens and humans. Mitochondrial MDH from tissue homogenates has no detectable KAR activity but purified MDH-2 does.^ The previous claim that the gene for KAR is on human chromosome 12 is disputed because both MDH-1 and LDH bands appear with slightly different mobility approximately midway between the human and hamster controls in somatic cell hybrid studies, and the meaning of this artifact is discussed. ^
Resumo:
The uptake, metabolism, and metabolic effects of the antitumor tricyclic nucleoside (TCN, NSC-154020) were studied in vitro. Uptake of TCN by human erythrocytes was concentrative, resulting mainly from the rapid intracellular phosphorylation of TCN. At high TCN doses, however, unchanged TCN was also concentrated within the erythrocytes. The initial linear rate of TCN uptake was saturable and obeyed Michaelis-Menten kinetics. TCN was metabolized chiefly to its 5'-monophosphate not only by human erythrocytes but also by wild-type Chinese hamster ovary (CHO) cells. In addition, three other metabolites were detected by means of high-performance liquid chromatography. The structures of these metabolites were elucidated by ultraviolet spectroscopy, infrared spectroscopy, mass spectrometry, and further confirmed by incubations with catabolic enzymes and intact wild-type or variant CHO cells. All were novel types of oxidative degradation products of TCN. Two are proposed to be (alpha) and (beta) anomers of a D-ribofuranosyl nucleoside with a pyrimido{4,5-c}pyridazine-4-one base structure. The third metabolite is most likely the 5'-monophosphate of the (beta) anomer. A CHO cell line deficient in adenosine kinase activity failed to phosphorylate either TCN or the (beta) anomer. No further phosphorylation of the 5'-monophosphates by normal cells occurred. Although the pathways leading to the formation of these TCN metabolites have not been proven, a mechanism is proposed to account for the above observations. The same adenosine kinase-deficient CHO cells were resistant to 500 (mu)M TCN, while wild-type cells could not clone in the presence of 20 (mu)M TCN. Simultaneous addition of purines, pyrimidines, and purine precursors failed to reverse this toxicity. TCN-treatment strongly inhibited formate or glycine incorporation into ATP and GTP of wild-type CHO cells. Hypoxanthine incorporation inhibited to a lesser degree, with the inhibition of incorporation into GTP being more pronounced. Although precursor incorporation into GTP was inhibited, GTP concentrations were elevated rather than reduced after 4-hr incubations with 20 (mu)M or 50 (mu)M TCN. These results suggested an impairment of GTP utilization. TCN (50 (mu)M) inhibited leucine and thymidine incorporation into HClO(,4)-insoluble material to 30-35% of control throughout 5-hr incubations. Incorporation of five other amino acids was inhibited to the same extent as leucine. Pulse-labeling assays (45 min) with uridine, leucine, and thymidine failed to reveal selective inhibition of DNA or protein synthesis by 0.05-50 (mu)M TCN; however, the patterns of inhibition were similar to those of known protein synthesis inhibitors. TCN 5'-monophosphate inhibited leucine incorporation by rabbit reticulocyte lysates; the inhibition was 2000 times less potent than that of cycloheximide. The 5'-monophosphate failed to inhibit a crude nuclear DNA-synthesizing system. Although TCN 5'-monophosphate apparently inhibits purine synthesis de novo, its cytotoxicity is not reversed by exogenous purines. Consequently, another mechanism such as direct inhibition of protein synthesis is probably a primary mechanism of toxicity. ^
Resumo:
We have performed microfluidic experiments with erythrocytes passing through a network of microchannels of 20–25 μm width and 5 μm of height. Red blood cells (RBCs) were flowing in countercurrent directions through microchannels connected by μm pores. Thereby, we have observed interesting flow dynamics. All pores were blocked by erythrocytes. Some erythrocytes have passed through pores, depending on the channel size and cell elasticity. Many RBCs split into two or more smaller parts. Two types of splits were observed. In one type, the lipid bilayer and spectrin network were cut at the same time. In the second type, the lipid bilayer reconnected, but the part of spectrin network stayed outside the cell forming a rope like structure, which could eventually break. The microporous membrane results in multiple breakups of the cells, which can have various clinical implications, e.g., glomerulus hematuria and anemia of patients undergoing dialysis. The cell breakup procedure is similar to the one observed in the droplet breakage of viscoelastic liquids in confinement.
Resumo:
A method for the culturing and propagation of ovine bone marrow-derived macrophages (BMM) in vitro is described. Bone marrow cells from sterna of freshly slaughtered sheep were cultured in hydrophobic (teflon foil) bags in the presence of high serum concentrations (20% autologous serum and 20% fetal calf serum). During an 18 day culture period in the absence of added conditioned medium, and without medium change, a strong enrichment of mononuclear phagocytes was achieved. Whereas the number of macrophages increased four to fivefold during this time, granulocytes, lymphoid cells, stem cells and undifferentiated progenitor cells were reduced to less than 3% of their numbers at Day 0. This resulted in BMM populations of 94 +/- 3% purity. These cells had morphological and histochemical characteristics of differentiated macrophages, and they performed functions similar to those of non-activated, unprimed human monocyte-derived macrophages. Thus, they avidly ingested erythrocytes coated with IgG of heterologous or homologous origin. They expressed a modest level of procoagulant activity, but upon triggering with lipopolysaccharide (LPS), a marked increase in cell-associated procoagulant activity was observed. LPS triggering promoted the secretion of interleukin-1, as evidenced by measurement of murine thymocyte costimulatory activity, and transforming growth factor-beta. Using the mouse L929 cell cytotoxicity assay as an indication of tumor necrosis factor (TNF) activity, no TNF activity was detected in the same supernatants, a result possibly due to species restriction. BMM generated low levels of O2- upon triggering with phorbol 12-myristate 13-acetate (PMA). On the other hand, no O2- production was observed upon stimulation with zymosan opsonized with ovine or human serum. Using luminol-enhanced chemiluminescence (CL) as a more sensitive indicator of an oxidative burst, both PMA or zymosan were able to trigger CL, but the response was subject to partial inhibition by sodium azide, an inhibitor of myeloperoxidase. This points to non-macrophage cells contributing also to the CL response, and is consistent with the view that unprimed BMM elicit a low oxidative burst upon triggering with strong inducers of a burst. Our functional characterization now allows us to apply priming and activation protocols and to relate their effect to functional alterations.
Resumo:
Ovine bone marrow-derived macrophages (BMM) may express several IgG receptor (Fc gamma receptor; FcR) subsets. To study this, model particles (opsonized erythrocytes; EA), which are selectively handled by certain FcR subsets of human macrophages were used in cross-inhibition studies and found to react in a similar manner with FcR subsets of sheep macrophages. In experiments with monoclonal antibodies against subsets of human FcR, human erythrocytes (E) treated with human anti-D-IgG (anti-D-EAhu) and sheep E treated with bovine IgG1 (Bo1-EAs) were handled selectively by human macrophage FcRI and FcRII, respectively. Rabbit-IgG-coated sheep E (Rb-EAs) were recognized by FcRI, FcRII and possibly also by FcRIII of human macrophages. Anti-D-EAhu, Bo1-EAs and Rb-EAs were also ingested by sheep BMM. Competitive inhibition tests, using various homologous and heterologous IgG isotypes as fluid phase inhibitors and the particles used as FcR-specific tools in man (anti-D-EAhu and Bo1-EAs), revealed a heterogeneity of FcR also in sheep BMM. Thus, ingestion of anti-D-EAhu by ovine BMM was inhibited by low concentrations of competitor IgG from rabbit or man in the fluid phase, but not at all by bovine IgG1, whereas ingestion of Bo1-EAs was inhibited by bovine IgG1. This suggested that anti-D-EAhu were recognized by a FcR subset distinct from that recognizing bovine-IgG1. It was concluded that sheep BMM express functional analogs of human macrophage FcRI and FcRII and that Bo1-EAs and anti-D-EAhu are handled by distinct subsets of BMM FcR. All EAhu tested (EAhu treated with anti-D, sheep IgG1 or sheep IgG2) were ingested to a lower degree than EAs. This inefficient phagocytosis could be enhanced by treatment of EAhu with antiglobulin from the rabbit, suggesting that it is caused by a low degree of activity of opsonizing antibodies rather than special properties of the erythrocytes themselves. Several lines of evidence suggested that both FcR subsets of ovine BMM recognize both ovine IgG1 and IgG2. In contrast, bovine IgG1 reacts with one FcR subset and bovine IgG2 interacts inefficiently with all FcR of ovine BMM.
Resumo:
Polyspecific IgG given intravenously at high doses (IVIG) is used for immunomodulatory therapy in autoimmune diseases such as idiopathic thrombocytopenic purpura and myasthenia gravis. It is assumed that the clinical effect is brought about in part by a modulation of mononuclear phagocyte function, in particular by an inhibition of Fc receptor (FcR) mediated phagocytosis. In the present study, the effect of IVIG on FcR-mediated phagocytosis by monocytes was analysed in vitro. Since monocytes exposed to minute amounts of surface-bound IgG displayed impaired phagocytosis of IgG-coated erythrocytes (EA), the effect of IVIG was studied with mononuclear cells suspended in teflon bags in medium containing 10% autologous serum and IVIG (2-10 mg/ml). Monocytes pre-exposed to IVIG and then washed, displayed impaired ingestion of EA when compared with control cells cultured in 10% autologous serum only. The decrease in phagocytosis was observed with sheep erythrocytes treated with either rabbit IgG or bovine IgG1 and with anti-D-treated human erythrocytes. This suggests that phagocytosis via both FcR type I (FcRI) and type II (FcRII) was decreased. The impairment of phagocytosis was dependent on the presence of intact IgG and was mediated by IVIG from nulliparous donors and from multigravidae to the same extent, suggesting that alloantibodies contained in IVIG have a minor role in modulating FcR-mediated phagocytosis by monocytes. A flow cytometric analysis using anti-FcRI, FcRII and FcRII monoclonal antibodies showed that IVIG treatment upregulated FcRI expression but did not significantly alter the expression of FcRII and FcRIII.
Resumo:
We describe 14 cases of angiomatous Kaposi sarcoma (KS), a distinct histological variant of KS first mentioned by Gottlieb and Ackerman in 1988 that can easily be mistaken for a hemangioma. Intriguingly, this variant of KS has not attracted much attention and has not been studied in detail. Immunohistochemistry showed prominent staining of podoplanin (D2-40) of the neoplastic vasculature but not the preexisting vessels, suggesting lymphatic differentiation, despite the erythrocyte-filled round lumens. To test whether D2-40 staining of round vessels with erythrocytes was distinctive, we stained sinusoidal hemangiomas and cellular angiolipomas, both of which have these structures. In contrast to angiomatous KS, the vessels in both entities were podoplanin (D2-40) negative. The finding of round erythrocyte-filled vessels with podoplanin (D2-40) positivity may be distinctive for this form of KS.
Resumo:
Plasmodium parasites express a potent inhibitor of cysteine proteases (ICP) throughout their life cycle. To analyze the role of ICP in different life cycle stages, we generated a stage-specific knockout of the Plasmodium berghei ICP (PbICP). Excision of the pbicb gene occurred in infective sporozoites and resulted in impaired sporozoite invasion of hepatocytes, despite residual PbICP protein being detectable in sporozoites. The vast majority of these parasites invading a cultured hepatocyte cell line did not develop to mature liver stages, but the few that successfully developed hepatic merozoites were able to initiate a blood stage infection in mice. These blood stage parasites, now completely lacking PbICP, exhibited an attenuated phenotype but were able to infect mosquitoes and develop to the oocyst stage. However, PbICP-negative sporozoites liberated from oocysts exhibited defective motility and invaded mosquito salivary glands in low numbers. They were also unable to invade hepatocytes, confirming that control of cysteine protease activity is of critical importance for sporozoites. Importantly, transfection of PbICP-knockout parasites with a pbicp-gfp construct fully reversed these defects. Taken together, in P. berghei this inhibitor of the ICP family is essential for sporozoite motility but also appears to play a role during parasite development in hepatocytes and erythrocytes.
Resumo:
The globin gene family of Xenopus laevis comprises pairs of closely related genes that are arranged in two clusters, each pair of genes being co-ordinately and stage-specifically expressed. To get information on putative regulatory elements, we compared the DNA sequences and the chromatin conformation 5' to the co-ordinately expressed adult alpha-globin genes. Sequence analysis revealed a relatively conserved region from the cap site up to position -289, and further upstream seven distinct boxes of homology, separated by more diverged sequences or deletions/insertions. The homology boxes comprise 22 to 194 base-pairs showing 78 to 95% homology. Analysis of chromatin conformation showed that DNase I preferentially cuts the upstream region of both genes at similar positions, 5' to the T-A-T-A and the C-C-A-A-T boxes, only in chromatin of adult erythroblasts and erythrocytes, where adult globin genes are expressed, but not in chromatin of adult liver cells or larval erythrocytes, where these genes are silent. This suggests that cell- and stage-specific activation of these genes coincides with specific changes in chromatin conformation within the proximal upstream region. No difference was found in the nucleotide sequence within the DNase I hypersensitive region proximal to the adult alpha 1-globin gene in DNA from embryonic cells, in which this gene is inactive, and adult erythrocytes, expressing this gene.