844 resultados para Robot Soccer
Resumo:
This paper presents a completely autonomous solution to participate in the Indoor Challenge of the 2013 International Micro Air Vehicle Competition (IMAV 2013). Our proposal is a multi-robot system with no centralized coordination whose robotic agents share their position estimates. The capability of each agent to navigate avoiding collisions is a consequence of the resulting emergent behavior. Each agent consists of a ground station running an instance of the proposed architecture that communicates over WiFi with an AR Drone 2.0 quadrotor. Visual markers are employed to sense and map obstacles and to improve the pose estimation based on Inertial Measurement Unit (IMU) and ground optical flow data. Based on our architecture, each robotic agent can navigate avoiding obstacles and other members of the multi-robot system. The solution is demonstrated and the achieved navigation performance is evaluated by means of experimental flights. This work also analyzes the capabilities of the presented solution in simulated flights of the IMAV 2013 Indoor Challenge. The performance of the CVG UPM team was awarded with the First Prize in the Indoor Autonomy Challenge of the IMAV 2013 competition.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot.
Resumo:
This paper presents a model of a control system for robot systems inspired by the functionality and organisation of human neuroregulatory system. Our model was specified using software agents within a formal framework and implemented through Web Services. This approach allows the implementation of the control logic of a robot system with relative ease, in an incremental way, using the addition of new control centres to the system as its behaviour is observed or needs to be detailed with greater precision, without the need to modify existing functionality. The tests performed verify that the proposed model has the general characteristics of biological systems together with the desirable features of software, such as robustness, flexibility, reuse and decoupling.
Resumo:
This paper analyzes the learning experiences and opinions from a group of undergraduate students in a course about Robotics. The contents of this course were taught as a set of seminars. In each seminar, the student learned interdisciplinary knowledge of computer science, control engineering, electronics and other fields related to Robotics. The aim of this course is that the students are able to design and implement their own and custom robotic solution for a series of tests planned by the teachers. These tests measure the behavior and mechatronic features of the students' robots. Finally, the students' robots are confronted with some competitions. In this paper, the low-cost robotic architecture used by the students, the contents of the course, the tests to compare the solutions of students and the opinion of them are amply discussed.
Resumo:
Virtual Worlds Generator is a grammatical model that is proposed to define virtual worlds. It integrates the diversity of sensors and interaction devices, multimodality and a virtual simulation system. Its grammar allows the definition and abstraction in symbols strings of the scenes of the virtual world, independently of the hardware that is used to represent the world or to interact with it. A case study is presented to explain how to use the proposed model to formalize a robot navigation system with multimodal perception and a hybrid control scheme of the robot. The result is an instance of the model grammar that implements the robotic system and is independent of the sensing devices used for perception and interaction. As a conclusion the Virtual Worlds Generator adds value in the simulation of virtual worlds since the definition can be done formally and independently of the peculiarities of the supporting devices.
Resumo:
Image Based Visual Servoing (IBVS) is a robotic control scheme based on vision. This scheme uses only the visual information obtained from a camera to guide a robot from any robot pose to a desired one. However, IBVS requires the estimation of different parameters that cannot be obtained directly from the image. These parameters range from the intrinsic camera parameters (which can be obtained from a previous camera calibration), to the measured distance on the optical axis between the camera and visual features, it is the depth. This paper presents a comparative study of the performance of D-IBVS estimating the depth from three different ways using a low cost RGB-D sensor like Kinect. The visual servoing system has been developed over ROS (Robot Operating System), which is a meta-operating system for robots. The experiments prove that the computation of the depth value for each visual feature improves the system performance.
Resumo:
Traditional visual servoing systems do not deal with the topic of moving objects tracking. When these systems are employed to track a moving object, depending on the object velocity, visual features can go out of the image, causing the fail of the tracking task. This occurs specially when the object and the robot are both stopped and then the object starts the movement. In this work, we have employed a retina camera based on Address Event Representation (AER) in order to use events as input in the visual servoing system. The events launched by the camera indicate a pixel movement. Event visual information is processed only at the moment it occurs, reducing the response time of visual servoing systems when they are used to track moving objects.
Resumo:
New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.
Resumo:
Este trabajo muestra cómo se realiza la enseñanza de robótica mediante un robot modular y los resultados educativos obtenidos en el Máster Universitario en Automática y Robótica de la Escuela Politécnica Superior de la Universidad de Alicante. En el artículo se describen los resultados obtenidos con el uso de este robot modular tanto en competencias genéricas como específicas, en las enseñanzas de electrónica, control y programación del Máster. En este artículo se exponen los objetivos de aprendizaje para cada uno de ellos, su aplicación a la enseñanza y los resultados educativos obtenidos. En los resultados del estudio, cabe destacar que el alumno ha mostrado mayor interés y ha fomentado su aprendizaje autónomo. Para ello, el robot modular se construyó con herramientas para fomentar este tipo de enseñanza y aprendizaje, tales como comunicaciones interactivas para monitorizar, cambiar y adaptar diversos parámetros de control y potencia del robot.
Resumo:
This study aimed to evaluate the prevalence and implementation of a training emphasizing the use of autonomy supportive coaching behaviors among youth soccer coaches in game-play situations as well as evaluating its effects on motivational processes among athletes. Participants included youth sport soccer coaches and their intact teams. Coaches received a series of autonomy-supportive coaching training interventions based on successful programs in general and physical education (Reeve, Jang, Carrell, Jeon & Barch, 2004; Cheon, Reeve & Moon, 2012). Athletes completed questionnaires to assess perceived autonomy support, basic need satisfaction, and motivation (Harris & Watson, 2011). Observations indicated coaches were not able to significantly modify their behaviors, yet reflectively reported modest implementation of autonomy supportive behaviors. Coaches believed the training influenced their coaching style/philosophy in regards to the coach-athlete relationship and communication styles, emphasizing choice and rationales. Continued research is needed to enhance use of autonomy supportive behaviors with volunteer coaches in a youth sport environment.
Resumo:
Este trabajo presenta el diseño, construcción y programación de un robot modular para el desarrollo tanto de competencias genéricas como específicas, en las enseñanzas de electrónica, control y programación del Master de Automática y Robótica de la Escuela Politécnica Superior de la Universidad de Alicante. En este trabajo se exponen los diferentes módulos propuestos, así como los objetivos de aprendizaje para cada uno de ellos. Uno de los factores más importantes a destacar en el presente estudio es el posible desarrollo de la creatividad y el aprendizaje autónomo. Para ello, se desarrollará especialmente un módulo de comunicación por bluetooth que servirá para monitorizar, cambiar y adaptar on-line diversos parámetros de control y potencia del robot. Además, dicha herramienta se ha introducido como parte de la metodología en las asignaturas del Máster de Electromecánica y Sistemas de Control Automático. En esta memoria se mostrarán los distintos resultados obtenidos durante y en la finalización de este trabajo.
Resumo:
The aim of this study is to analyse the physical and physiological factors in soccer training at different categories of training. The participants were 30 soccer players of 8-aside soccer in the under 10’s age group (9.93±0.25 years) who participated in the under 10 Provincial Tournament in Alicante. During training, the variables of covered distance, heart rate, speed (average and maximum values) as well as the methodology used and position were registered. After the statistical analysis and its related discussion, it was concluded that the players do not show differences in the covered total distance in relation to the category. Notwithstanding, there are differences with regards to speed and heart rate, which are caused by the greater physical development of the players in comparison to the under10’s age group category. Regarding the methodology employed, it is worth stressing that the coaches used, to a greater extend, the global method, followed by the mixed method.
Resumo:
Sensing techniques are important for solving problems of uncertainty inherent to intelligent grasping tasks. The main goal here is to present a visual sensing system based on range imaging technology for robot manipulation of non-rigid objects. Our proposal provides a suitable visual perception system of complex grasping tasks to support a robot controller when other sensor systems, such as tactile and force, are not able to obtain useful data relevant to the grasping manipulation task. In particular, a new visual approach based on RGBD data was implemented to help a robot controller carry out intelligent manipulation tasks with flexible objects. The proposed method supervises the interaction between the grasped object and the robot hand in order to avoid poor contact between the fingertips and an object when there is neither force nor pressure data. This new approach is also used to measure changes to the shape of an object’s surfaces and so allows us to find deformations caused by inappropriate pressure being applied by the hand’s fingers. Test was carried out for grasping tasks involving several flexible household objects with a multi-fingered robot hand working in real time. Our approach generates pulses from the deformation detection method and sends an event message to the robot controller when surface deformation is detected. In comparison with other methods, the obtained results reveal that our visual pipeline does not use deformations models of objects and materials, as well as the approach works well both planar and 3D household objects in real time. In addition, our method does not depend on the pose of the robot hand because the location of the reference system is computed from a recognition process of a pattern located place at the robot forearm. The presented experiments demonstrate that the proposed method accomplishes a good monitoring of grasping task with several objects and different grasping configurations in indoor environments.
Resumo:
Stroke is a leading cause of death and permanent disability worldwide, affecting millions of individuals. Traditional clinical scores for assessment of stroke-related impairments are inherently subjective and limited by inter-rater and intra-rater reliability, as well as floor and ceiling effects. In contrast, robotic technologies provide objective, highly repeatable tools for quantification of neurological impairments following stroke. KINARM is an exoskeleton robotic device that provides objective, reliable tools for assessment of sensorimotor, proprioceptive and cognitive brain function by means of a battery of behavioral tasks. As such, KINARM is particularly useful for assessment of neurological impairments following stroke. This thesis introduces a computational framework for assessment of neurological impairments using the data provided by KINARM. This is done by achieving two main objectives. First, to investigate how robotic measurements can be used to estimate current and future abilities to perform daily activities for subjects with stroke. We are able to predict clinical scores related to activities of daily living at present and future time points using a set of robotic biomarkers. The findings of this analysis provide a proof of principle that robotic evaluation can be an effective tool for clinical decision support and target-based rehabilitation therapy. The second main objective of this thesis is to address the emerging problem of long assessment time, which can potentially lead to fatigue when assessing subjects with stroke. To address this issue, we examine two time reduction strategies. The first strategy focuses on task selection, whereby KINARM tasks are arranged in a hierarchical structure so that an earlier task in the assessment procedure can be used to decide whether or not subsequent tasks should be performed. The second strategy focuses on time reduction on the longest two individual KINARM tasks. Both reduction strategies are shown to provide significant time savings, ranging from 30% to 90% using task selection and 50% using individual task reductions, thereby establishing a framework for reduction of assessment time on a broader set of KINARM tasks. All in all, findings of this thesis establish an improved platform for diagnosis and prognosis of stroke using robot-based biomarkers.