981 resultados para Reproduction (biology)
Resumo:
The existing clinical biomarkers for prostate cancer (PCa) are not ideal, since they cannot specifically differentiate between those patients who should be treated immediately and those who should avoid overtreatment. Current screening techniques lack specificity, and a decisive diagnosis of PCa is based on prostate biopsy. Although PCa screening is widely utilized nowadays, two-thirds of the biopsies performed are still unnecessary. Thus, the discovery of noninvasive PCa biomarkers remains an urgent unmet medical need. Once metastasized, there is still no curative therapy. A better understanding of sustained androgen receptor signalling in castration resistant prostate cancer (CRPC) has now led to the development of more effective therapies. We need a better understanding of the molecular and cellular aspects of prostate carcinogenesis and progression. Identification of cancer initiating cells and therapies against these populations is a promising way forward to fight this disease.
Resumo:
Germ cell tumors occur both in the gonads of both sexes and in extra-gonadal sites during adoles-cence and early adulthood. Malignant ovarian germ cell tumors are rare neoplasms accounting for less than 5% of all cases of ovarian malignancy. In contrast, testicular cancer is the most common malignancy among young males. Most of patients survive the disease. Prognostic factors of gonadal germ cell tumors include histology, clinical stage, size of the primary tumor and residua, and levels of tumor markers. Germ cell tumors include heterogeneous histological subgroups. The most common subgroup includes germinomas (ovarian dysgerminoma and testicular seminoma); other subgroups are yolk sac tumors, embryonal carcinomas, immature teratomas and mixed tumors. The origin of germ cell tumors is most likely primordial germ cells. Factors behind germ cell tumor development and differentiation are still poorly known. The purpose of this study was to define novel diagnostic and prognostic factors for malignant gonadal germ cell tumors. In addition, the aim was to shed further light into the molecular mechanisms regulating gonadal germ cell tumorigenesis and differentiation by studying the roles of GATA transcription factors, pluripotent factors Oct-3/4 and AP-2γ, and estrogen receptors. This study revealed the prognostic value of CA-125 in malignant ovarian germ cell tumors. In addition advanced age and residual tumor had more adverse outcome. Several novel markers for histological diagnosis were defined. In the fetal development transcription factor GATA-4 was expressed in early fetal gonocytes and in testicular carcinoma precursor cells. In addition, GATA-4 was expressed in both gonadal germinomas, thus it may play a role in the development and differentiation of the germinoma tumor subtype. Pluripotent factors Oct-3/4 and AP-2γ were expressed in dysgerminomas, thus they could be used in the differential diagnosis of the germ cell tumors. Malignant ovarian germ cell tumors expressed estrogen receptors and their co-regulator SNURF. In addition, estrogen receptor expression was up-regulated by estradiol stimulation. Thus, gonadal steroid hormone burst in puberty may play a role in germ cell tumor development in the ovary. This study shed further light in to the molecular pathology of malignant gonadal germ cell tumors. In addition, some novel diagnostic and prognostic factors were defined. This data may be used in the differential diagnosis of germ cell tumor patients.
Resumo:
Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and its complexes, bacterial virus bacteriophage phi6, and the photosynthetic antenna complex from green sulfur bacteria, chlorosome. Information gathered using various structure determination methods has been combined to the low resolution information obtained from solution scattering. Conformational changes in calmodulin-ligand complex were studied by combining the directional information obtained from residual dipole couplings in nuclear magnetic resonance to the size information obtained from small-angle X-ray scattering from solution. The locations of non-structural protein components in a model of bacteriophage phi6, based mainly on electron microscopy, were determined by neutron scattering, deuterium labeling and contrast variation. New data are presented on the structure of the photosynthetic antenna complex of green sulfur bacteria and filamentous anoxygenic phototrophs, also known as the chlorosome. The X-ray scattering and electron cryomicroscopy results from this system are interpreted in the context of a new structural model detailed in the third paper of this dissertation. The model is found to be consistent with the results obtained from various chlorosome containing bacteria. The effect of carotenoid synthesis on the chlorosome structure and self-assembly are studied by carotenoid extraction, biosynthesis inhibition and genetic manipulation of the enzymes involved in carotenoid biosynthesis. Carotenoid composition and content are found to have a marked effect on the structural parameters and morphology of chlorosomes.
Resumo:
Reproduction of plants in fragmented habitats may be limited because of lower diversity or abundance of pollinators, and/or variation in local plant density. We assessed natural fruit set and pollinator limitation in ten species of woody plants in natural and restored fragments in the Pondicherry region of southern India, to see whether breeding system of plants (self-compatible and self-incompatible) affected fruit set. We tested whether the number of flowering individuals in the fragments affected the fruit set and further examined the adult and sapling densities of self-compatible (SC) and self-incompatible (SI) species. We measured the natural level of fruit set and pollinator limitation (calculated as the difference in fruit set between hand cross-pollinated and naturally pollinated flowers). Our results demonstrate that there was a higher level of pollinator limitation and hence lower levels of natural fruit set in self-incompatible species as compared to self-compatible species. However, the hand cross-pollinated flowers in SC and SI species produced similar levels of fruit set,further indicating that lower fruit set was due to pollinator limitation and not due to lack of cross-compatible individuals in the fragments. There was no significant relation between number of flowering individuals and the levels of natural fruit set, except for two species Derris ovalifolia, Ixora pavetta. In these species the natural fruit set decreased with increasing population size, again indicating pollinator limitation. The adult and sapling densities in self-compatible species were significantly higher than inself-incompatible species. These findings indicate that the low reproductive output in self-incompatible species may eventually lead to lower population sizes. Restoration of pollinator services along with plant species in fragmented habitats is important for the long-term conservation of biodiversity. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Chronic inflammation is now recognized as a major cause of malignant disease. In concert with various mechanisms (including DNA instability), hypoxia and activation of inflammatory bioactive lipid pathways and pro-inflammatory cytokines open the doorway to malignant transformation and proliferation, angiogenesis, and metastasis in many cancers. A balance between stimulatory and inhibitory signals regulates the immune response to cancer. These include inhibitory checkpoints that modulate the extent and duration of the immune response and may be activated by tumor cells. This contributes to immune resistance, especially against tumor antigen-specific T-cells. Targeting these checkpoints is an evolving approach to cancer immunotherapy, designed to foster an immune response. The current focus of these trials is on the programmed cell death protein 1 (PD-1) receptor and its ligands (PD-L1, PD-L2) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4). Researchers have developed anti-PD-1 and anti-PDL-1 antibodies that interfere with the ligands and receptor and allow the tumor cell to be recognized and attacked by tumor-infiltrating T-cells. These are currently being studied in lung cancer. Likewise, CTLA-4 inhibitors, which have had success treating advanced melanoma, are being studied in lung cancer with encouraging results.
Resumo:
Viral hepatitis is caused mainly by infection with one of the five hepatitis viruses, which use the liver as their primary site of replication. Each of these, known as hepatitis A through E viruses (HAV to HEV), belong to different virus families, have unique morphology, genomic organization and replication strategy. These viruses cause similar clinical manifestations during the acute phase of infection but vary in their ability to cause chronic infection. While HAV and HEV cause only acute disease with no chronic sequelae, HBV, HCV and HDV cause varying degrees of chronicity and liver injury, which can progress to cirrhosis and liver cancers. Though specific serological tests are available for the known hepatitis viruses, nearly 20% of all hepatitis cases show no markers. Antiviral therapy is also recommended for some hepatitis viruses and a preventive vaccine is available only for hepatitis B. More research and public awareness programmes are needed to control the disease. This review will provide an overview of the hepatitis viruses and the disease they cause.
Resumo:
Computational modelling of mechanisms underlying processes in the real world can be of great value in understanding complex biological behaviours. Uptake in general biology and ecology has been rapid. However, it often requires specific data sets that are overly costly in time and resources to collect. The aim of the current study was to test whether a generic behavioural ecology model constructed using published data could give realistic outputs for individual species. An individual-based model was developed using the Pattern-Oriented Modelling (POM) strategy and protocol, based on behavioural rules associated with insect movement choices. Frugivorous Tephritidae (fruit flies) were chosen because of economic significance in global agriculture and the multiple published data sets available for a range of species. The Queensland fruit fly (Qfly), Bactrocera tryoni, was identified as a suitable individual species for testing. Plant canopies with modified architecture were used to run predictive simulations. A field study was then conducted to validate our model predictions on how plant architecture affects fruit flies’ behaviours. Characteristics of plant architecture such as different shapes, e.g., closed-canopy and vase-shaped, affected fly movement patterns and time spent on host fruit. The number of visits to host fruit also differed between the edge and centre in closed-canopy plants. Compared to plant architecture, host fruit has less contribution to effects on flies’ movement patterns. The results from this model, combined with our field study and published empirical data suggest that placing fly traps in the upper canopy at the edge should work best. Such a modelling approach allows rapid testing of ideas about organismal interactions with environmental substrates in silico rather than in vivo, to generate new perspectives. Using published data provides a saving in time and resources. Adjustments for specific questions can be achieved by refinement of parameters based on targeted experiments.
Resumo:
Queens and workers are not morphologically differentiated in the primitively eusocial wasp, Ropalidia marginata. Upon removal of the queen, one of the workers becomes extremely aggressive, but immediately drops her aggression if the queen is returned. If the queen is not returned, this hyper-aggressive individual, the potential queen (PQ), will develop her ovaries, lose her hyper-aggression, and become the next colony queen. Because of the non-aggressive nature of the queen, and because the PQ loses her aggression by the time she starts laying eggs, we hypothesized that regulation of worker reproduction in R marginata is mediated by pheromones rather than by physical aggression. Based on the immediate loss of aggression by the PQ upon return of the queen, we developed a bioassay to test whether the queen's Dufour's gland is, at least, one of the sources of the queen pheromone. Macerates of the queen's Dufour's gland, but not that of the worker's Dufour's gland, mimic the queen in making the PQ decrease her aggression. We also correctly distinguished queens and workers of R. marginata nests by a discriminant function analysis based on the chemical composition of their respective Dufour's glands.
Resumo:
Recently it has been recognized that evolutionary aspects play a major role in conservation issues of a species. In this thesis I have combined evolutionary research with conservation studies to provide new insight into these fields. The study object of this thesis is the house sparrow, a species that has features that makes it interesting for this type of study. The house sparrow has been ubiquitous almost all over the world. Even though being still abundant, several countries have reported major declines. These declines have taken place in a relatively short time covering both urban and rural habitats. In Finland this species has declined by more than two thirds in just over two decades. In addition, as the house sparrow lives only in human inhabited areas it can also raise public awareness to conservation issues. I used both an extensive museum collection of house sparrows collected in 1980s from all over Finland as well as samples collected in 2009 from 12 of the previously collected localities. I used molecular techniques to study neutral genetic variation within and genetic differentiation between the study populations. This knowledge I then combined with data gathered on morphometric measurements. In addition I analyzed eight heavy metals from the livers of house sparrows that lived in either rural or urban areas in the 1980s and evaluated the role of heavy metal pollution as a possible cause of the declines. Even though dispersal of house sparrows is limited I found that just as the declines started in 1980s the house sparrows formed a genetically panmictic population on the scale of the whole Finland. When compared to Norway, where neutral genetic divergence has been found even with small geographic distances, I concluded that this difference would be due to contrasting landscapes. In Finland the landscape is rather homogeneous facilitating the movements of these birds and maintaining gene flow even with the low dispersal. To see whether the declines have had an effect on the neutral genetic variation of the populations I did a comparison between the historical and contemporary genetic data. I showed that even though genetic diversity has not decreased due to the drastic declines the populations have indeed become more differentiated from each other. This shows that even in a still quite abundant species the declines can have an effect on the genetic variation. It is shown that genetic diversity and differentiation may approach their new equilibriums at different rates. This emphasizes the importance of studying both of them and if the latter has increased it should be taken as a warning sign of a possible loss of genetic diversity in the future. One of the factors suggested to be responsible for the house sparrow declines is heavy metal pollution. When studying the livers of house sparrows from 1980s I discovered higher levels of heavy metal concentrations in urban than rural habitats, but the levels of the metals were comparatively low and based on that heavy metal pollution does not seem to be a direct cause for the declines in Finland. However, heavy metals are known to decrease the amount of insects in urban areas and thus in the cities heavy metals may have an indirect effect on house sparrows. Although neutral genetic variation is an important tool for conservation genetics it does not tell the whole story. Since neutral genetic variation is not affected by selection, information can be one-sided. It is possible that even neutral genetic differentiation is low, there can be substantial variation in additive genetic traits indicating local adaptation. Therefore I performed a comparison between neutral genetic differentiation and phenotypic differentiation. I discovered that two traits out of seven are likely to be under directional selection, whereas the others could be affected by random genetic drift. Bergmann s rule may be behind the observed directional selection in wing length and body mass. These results highlight the importance of estimating both neutral and adaptive genetic variation.
Resumo:
Mass spectrometry (MS) became a standard tool for identifying metabolites in biological tissues, and metabolomics is slowly acknowledged as a legitimate research discipline for characterizing biological conditions. The computational analyses of metabolomics, however, lag behind compared with the rapid advances in analytical aspects for two reasons. First is the lack of standardized data repository for mass spectra: each research institution is flooded with gigabytes of mass-spectral data from its own analytical groups and cannot host a world-class repository for mass spectra. The second reason is the lack of informatics experts that are fully experienced with spectral analyses. The two barriers must be overcome to establish a publicly free data server for MS analysis in metabolomics as does GenBank in genomics and UniProt in proteomics. The workshop brought together bioinformaticians working on mass spectral analyses in Finland and Japan with the goal to establish a consortium to freely exchange and publicize mass spectra of metabolites measured on various platforms computational tools to analyze spectra spectral knowledge that are computationally predicted from standardized data. This book contains the abstracts of the presentations given in the workshop. The programme of the workshop consisted of oral presentations from Japan and Finland, invited lectures from Steffen Neumann (Leibniz Institute of Plant Biochemistry), Matej Oresic (VTT), Merja Penttila (VTT) and Nicola Zamboni (ETH Zurich) as well as free form discussion among the participants. The event was funded by Academy of Finland (grants 139203 and 118653), Japan Society for the Promotion of Science (JSPS Japan-Finland Bilateral Semi- nar Program 2010) and Department of Computer Science University of Helsinki. We would like to thank all the people contributing to the technical pro- gramme and the sponsors for making the workshop possible. Helsinki, October 2010 Masanori Arita, Markus Heinonen and Juho Rousu
Resumo:
This article describes recent developments in the design and implementation of various strategies towards the development of novel therapeutics using first principles from biology and chemistry. Strategies for multi-target therapeutics and network analysis with a focus on cancer and HIV are discussed. Methods for gene and siRNA delivery are presented along with challenges and opportunities for siRNA therapeutics. Advances in protein design methodology and screening are described, with a focus on their application to the design of antibody based therapeutics. Future advances in this area relevant to vaccine design are also mentioned.
Resumo:
Guanylyl cyclase C (GCC) is the receptor for the family of guanylin peptides and bacterial heat-stable enterotoxins (ST). The receptor is composed of an extracellular, ligand-binding domain and an intracellular domain with a region of homology to protein kinases and a guanylyl cyclase catalytic domain. We have expressed the entire intracellular domain of GCC in insect cells and purified the recombinant protein, GCC-IDbac, to study its catalytic activity and regulation. Kinetic properties of the purified protein were similar to that of full-length GCC, and high activity was observed when MnGTP was used as the substrate. Nonionic detergents, which stimulate the guanylyl cyclase activity of membrane-associated GCC, did not appreciably increase the activity of GCC-IDbac, indicating that activation of the receptor by Lubrol involved conformational changes that required the transmembrane and/or the extracellular domain. The guanylyl cyclase activity of GCC-IDbac was inhibited by Zn2+, at concentrations shown to inhibit adenylyl cyclase, suggesting a structural homology between the two enzymes. Covalent crosslinking of GCC-IDbac indicated that the protein could associate as a dimer, but a large fraction was present as a trimer. Gel filtration analysis also showed that the major fraction of the protein eluted at a molecular size of a trimer, suggesting that the dimer detected by cross-linking represented subtle differences in the juxtaposition of the individual polypeptide chains. We therefore provide evidence that the trimeric state of GCC is catalytically active, and sequences required to generate the trimer are present in the intracellular domain of GCC.
Resumo:
Cyclic AMP synthesized by Mycobacterium tuberculosis has been shown to play a role in pathogenesis. However, the high levels of intracellularcAMP found in both pathogenic and nonpathogenic mycobacteria suggest that additional and important biological processes are regulated by characterization of novel cAMP-binding proteins in M. smegmatis and M. tuberculosis (MSMEG_5458 and Rv0998, respectively) that contain a cyclic nucleotide binding domain fused to a domain that shows similarity to the GNAT family of acetyltransferases. We detect protein lysine acetylation in mycobacteria and identify a universal stress protein (USP) as a substrate of MSMEG_5458. Acetylation of a lysine residue in USP is regulated by cAMP, and using a strain deleted for MSMEG_5458, we show that USP is indeed an in vivo substrate for MSMEG_5458. The Rv0998 protein shows a strict cAMP-dependent acetylation of USP, despite a lower affinity for cAMP than MSMEG_5458. Thus, this report not only represents the first demonstration of protein lysine acetylation in mycobacteria but also describes a unique functional interplay between a cyclic nucleotide binding domain and a protein acetyltransferase.