907 resultados para Programming frameworks
Resumo:
Several agent platforms that implement the belief-desire-intention (BDI) architecture have been proposed. Even though most of them are implemented based on existing general purpose programming languages, e.g. Java, agents are either programmed in a new programming language or Domain-specific Language expressed in XML. As a consequence, this prevents the use of advanced features of the underlying programming language and the integration with existing libraries and frameworks, which are essential for the development of enterprise applications. Due to these limitations of BDI agent platforms, we have implemented the BDI4JADE, which is presented in this paper. It is implemented as a BDI layer on top of JADE, a well accepted agent platform.
Resumo:
A programming style can be seen as a particular model of shaping thought or a special way of codifying language to solve a problem. An adaptive device is made up of an underlying formalism, for instance, an automaton, a grammar, a decision tree, etc., and an adaptive mechanism, responsible for providing features for self-modification. Adaptive languages are obtained by using some programming language as the device’s underlying formalism. The conception of such languages calls for a new programming style, since the application of adaptive technology in the field of programming languages suggests a new way of thinking. Adaptive languages have the basic feature of allowing the expression of programs which self-modifying through adaptive actions at runtime. With the adaptive style, programming language codes can be structured in such a way that the codified program therein modifies or adapts itself towards the needs of the problem. The adaptive programming style may be a feasible alternate way to obtain self-modifying consistent codes, which allow its use in modern applications for self-modifying code.
Resumo:
An adaptive device is made up of an underlying mechanism, for instance, an automaton, a grammar, a decision tree, etc., to which is added an adaptive mechanism, responsible for allowing a dynamic modification in the structure of the underlying mechanism. This article aims to investigate if a programming language can be used as an underlying mechanism of an adaptive device, resulting in an adaptive language.
Resumo:
Adaptive devices show the characteristic of dynamically change themselves in response to input stimuli with no interference of external agents. Occasional changes in behaviour are immediately detected by the devices, which right away react spontaneously to them. Chronologically such devices derived from researches in the field of formal languages and automata. However, formalism spurred applications in several other fields. Based on the operation of adaptive automata, the elementary ideas generanting programming adaptive languages are presented.
Resumo:
A programming style can be seen as a particular model of shaping thought or a special way of codifying language to solve a problem. Adaptive languages have the basic feature of allowing the expression of programs which self-modifying through adaptive actions at runtime. The conception of such languages calls for a new programming style, since the application of adaptive technology in the field of programming languages suggests a new way of thinking. With the adaptive style, programming language codes can be structured in such a way that the codified program therein modifies or adapts itself towards the needs of the problem. The adaptive programming style may be a feasible alternate way to obtain self-modifying consistent codes, which allow its use in modern applications for self-modifying code.
Resumo:
In this paper the architecture of an experimental multiparadigmatic programming environment is sketched, showing how its parts combine together with application modules in order to perform the integration of program modules written in different programming languages and paradigms. Adaptive automata are special self-modifying formal state machines used as a design and implementation tool in the representation of complex systems. Adaptive automata have been proven to have the same formal power as Turing Machines. Therefore, at least in theory, arbitrarily complex systems may be modeled with adaptive automata. The present work briefly introduces such formal tool and presents case studies showing how to use them in two very different situations: the first one, in the name management module of a multi-paradigmatic and multi-language programming environment, and the second one, in an application program implementing an adaptive automaton that accepts a context-sensitive language.
Resumo:
O professor apresenta o que é um framework através de dois exemplos de frameworks .NET e Java Runtime Environment (Java Virtual Machine - JVM). Também ilustra como é a estrutura dos dois frameworks .NET e JRE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.