999 resultados para Process mineralogy
Resumo:
Accurate process model elicitation continues to be a time consuming task, requiring skill on the part of the interviewer to extract explicit and tacit process information from the interviewee. Many errors occur in this elicitation stage that would be avoided by better activity recall, more consistent specification methods and greater engagement in the elicitation process by interviewees. Metasonic GmbH has developed a process elicitation tool for their process suite. As part of a research engagement with Metasonic, staff from QUT, Australia have developed a 3D virtual world approach to the same problem, viz. eliciting process models from stakeholders in an intuitive manner. This book chapter tells the story of how QUT staff developed a 3D Virtual World tool for process elicitation, took the outcomes of their research project to Metasonic for evaluation, and finally, Metasonic’s response to the initial proof of concept.
Resumo:
This chapter sets out to identify patterns at play in boardroom discussions around the design and adoption of an accountability system in a nonprofit organisation. To this end, it contributes to the scarce literature showing the backstage of management accounting systems (Berry, 2005), investment policy determining (Kreander, Beattie & McPhail, 2009; Kreander, McPhail & Molyneaux, 2004) and financial planning strategizing (Parker, 2004) or budgeting (Irvine 2005). The paucity of publications is due to issues raised by confidentiality preventing attendance at those meetings (Irvine, 2003), Irvine & Gaffikin, 2006). However, often, the implementation of a new control technology occurs over a long period of time that might exceed the duration of a research project (Quattrone & Hopper, 2001, 2005). Recent trends consisting of having research funded by grants from private institutions or charities have tended to reduce the length of such undertakings to a few months or rarely more than a couple of years (Parker, 2013);
Resumo:
Fashion Thinking: Creative Approaches to the Design Process, F. Dieffenbacher (2013) London: AVA, 224 pp., ISBN: 9782940411719, p/bk, $79.99
Resumo:
Identifying appropriate decision criteria and making optimal decisions in a structured way is a complex process. This paper presents an approach for doing this in the form of a hybrid Quality Function Deployment (QFD) and Cybernetic Analytic Network Process (CANP) model for project manager selection. This involves the use of QFD to translate the owner's project management expectations into selection criteria and the CANP to weight the expectations and selection criteria. The supermatrix approach then prioritises the candidates with respect to the overall decision-making goal. A case study is used to demonstrate the use of the model in selecting a renovation project manager. This involves the development of 18 selection criteria in response to the owner's three main expectations of time, cost and quality.
Resumo:
The aim of the paper is to give a feasibility study on the material deposition of Nanoscale textured morphology of titanium and titanium oxide layers on titanium and glass substrates. As a recent development in nanoscale deposition, Physical Vapor Deposition (PVD) based DC magnetron sputtering has been the choice for the deposition process. The nanoscale morphology and surface roughness of the samples have been characterized using Atomic Force Microscope (AFM). The surface roughnesses obtained from AFM have been compared using surface profiler. From the results we can say that the roughness values are dependent on the surface roughness of the substrate. The glass substrate was relatively smoother than the titanium plate and hence lower layer roughness was obtained. From AFM a unique nano-pattern of a boomerang shaped titanium oxide layer on glass substrate have been obtained. The boomerang shaped nano-scale pattern was found to be smaller when the layer was deposited at higher sputtering power. This indicated that the morphology of the deposited titanium oxide layer has been influenced by the sputtering power.
Resumo:
Although the notion of wellbeing is popular in contemporary literature, it is variously interpreted and has no common definition. Such inconsistencies in definition have particular relevance when considering wellbeing programs designed for children. By developing a broader conceptualisation of wellbeing and its key elements, the range of programs and services developed in the name of wellbeing will achieve a more consistent cross-disciplinary focus to ensure that the needs of the individual, including children, can more accurately be addressed. This paper presents a new perspective on conceptualising wellbeing. The authors argue that conceptualising wellbeing as an accrued process has particular relevance for both adults and children. A definition for accrued wellbeing is presented in an attempt to address some of the current deficiencies in existing understandings of an already complicated construct. The potential for the ideas presented when considering wellbeing as a process of accrual may have further application when considered beyond childhood.
Resumo:
Kaolinite naturally occurs in the plate form for the interlayer hydrogen bond and the distortion and adaption of tetrahedron and octahedron. But kaolinite sheets can be exfoliated to nanoscrolls artificially in laboratory through multiple-step displacement intercalation. The driving force for kaolinite sheet to be curled nanoscroll originates from the size discrepancy of Si–O tetrahedron and Al–O octahedron. The displacement intercalation promoted the platy kaolinite sheets spontaneously to be scrolled by eliminating the interlayer hydrogen bond and atomic interaction. Kaolinite nanoscrolls are hollow tubes with outer face of tetrahedral sheet and inner face of octahedral sheet. Based on the theoretical calculation it is firstly reported that the minimum interior diameter for a single kaolinite sheet to be scrolled is about 9.08 nm, and the optimal 24.30 nm, the maximum 100 nm, which is verified by the observation of scanning electron microscope and transmission electron microscope. The different adaption types and discrepancy degree between tetrahedron and octahedron generate various curling forces in different directions. The nanoscroll axes prefer the directions as [100], [1 �10], [110], [3 �10], and the relative curling force are as follows, [3 �10] > [100] = [1�10] > [110].
Resumo:
Process modeling – the design and use of graphical documentations of an organization’s business processes – is a key method to document and use information about the operations of businesses. Still, despite current interest in process modeling, this research area faces essential challenges. Key unanswered questions concern the impact of process modeling in organizational practice, and the mechanisms through which impacts are developed. To answer these questions and to provide a better understanding of process modeling impact, I turn to the concept of affordances. Affordances describe the possibilities for goal-oriented action that a technical object offers to a user. This notion has received growing attention from IS researchers. The purpose of my research is to further develop the IS discipline’s understanding of affordances and impacts from information objects, such as process models used by analysts for information systems analysis and design. Specifically, I seek to extend existing theory on the emergence, perception and actualization of affordances. I develop a research model that describes the process by which affordances emerge between an individual and an object, how affordances are perceived, and how they are actualized by the individual. The proposed model also explains the role of available information for the individual, and the influence of perceived actualization effort. I operationalize and test this research model empirically, using a full-cycle, mixed methods study consisting of case study and experiment.
Resumo:
Magnetic behavior of soils can seriously hamper the performance of geophysical sensors. Currently, we have little understanding of the types of minerals responsible for the magnetic behavior, as well as their distribution in space and evolution through time. This study investigated the magnetic characteristics and mineralogy of Fe-rich soils developed on basaltic substrate in Hawaii. We measured the spatial distribution of magnetic susceptibility (χlf) and frequency dependence (χfd%) across three test areas in a well-developed eroded soil on Kaho'olawe and in two young soils on the Big Island of Hawaii. X-ray diffraction spectroscopy, x-ray fluorescence spectroscopy (XFCF), chemical dissolution, thermal analysis, and temperature-dependent magnetic studies were used to characterize soil development and mineralogy for samples from soil pits on Kaho'olawe, surface samples from all three test areas, and unweathered basalt from the Big Island of Hawaii. The measurements show a general increase in magnetic properties with increasing soil development. The XRF Fe data ranged from 13% for fresh basalt and young soils on the Big Island to 58% for material from the B horizon of Kaho'olawe soils. Dithionite-extractable and oxalate-extractable Fe percentages increase with soil development and correlate with χlf-and χfd%, respectively. Results from the temperature-dependent susceptibility measurements show that the high soil magnetic properties observed in geophysical surveys in Kaho'olawe are entirely due to neoformed minerals. The results of our studies have implications for the existing soil survey of Kaho'olawe and help identify methods to characterize magnetic minerals in tropical soils.