993 resultados para Pressurised water reactor


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of an 8 hour-period of water deprivation on fluid and electrolyte renal excretion was investigated in male Wistar rats infected with the strain São Felipe (12SF) of Trypanosoma cruzi, in comparison with age and sex matched non-infected controls. The median percent reductions in the urinary flow (-40% v -63%) and excretion ofsodium (-57% v-79%) were smaller in chagasic than in control rats, respectively. So, chagasic rats excreted more than controls. On the other hand, the median percent decrement in the clearance of creatinine was higher in chagasic (-51%) than in controls (-39%). Thus, chagasic rats showed some disturbed renal hydroelectrolytic responses to water deprivation, expressed by smaller conservation, or higher excretion of water and sodium in association with smaller glomerularfiltration rate. This fact denoted an elevation in the fractional excretion of sodium and water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Química e Bioquímica

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação para obtenção do grau de Mestre em Biotecnologia

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Work Project, presented as part of the requirements for the Award of a Masters Degree in Economics from the NOVA – School of Business and Economics

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to identify parents and obtain segregating populations of cowpea (Vigna unguiculata L. Walp.) with the potential for tolerance to water deficit. A full diallel was performed with six cowpea genotypes, and two experiments were conducted in Teresina, PI, Brazil in 2011 to evaluate 30 F2 populations and their parents, one under water deficit and the other under full irrigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering and Technology Sciences, Chemical Engineering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O presente trabalho tem como objectivo contribuir para o estudo do desenvolvimento de um modelo matemático aplicado à digestão anaeróbia de resíduos sólidos, que incorpore os condicionamentos da geometria dos reactores e a sua influência na cinética do processo biológico. Nesse sentido, o trabalho propõe-se avaliar o comportamento cinético de três reactores, com o mesmo volume mas com diferentes relações tridimensionais, utilizando o mesmo substrato, e idênticos parâmetros ambientais e operacionais de funcionamento. Pretendeu-se estudar em que medida a relação do comprimento, largura e altura de um reactor pode interferir nas taxas de remoção de substrato, condicionando a respectiva difusão na biomassa e crescimento dos microrganismos. Considera-se que este aspecto é do maior interesse para o desenvolvimento de um modelo cinético, podendo minimizar desvios inerentes à própria modelação de processos biológicos complexos. A geometria do reactor, que se correlaciona com uma determinada relação tridimensional, pode constituir um parâmetro importante, que se designou por Kcig (Constante de Inibição Geométrica), dada a influência que poderá exercer na cinética do processo biológico. A sua avaliação, parametrização e consequente modelação, deverá facilitar a escolha da relação comprimento/largura/altura mais adequada, de forma a optimizar o funcionamento operacional do reactor. O plano experimental desenvolveu-se em duas fases, utilizando-se dois substratos com graus distintos de dificuldade de utilização pelos microrganismos, nomeadamente: Fase 1 (glucose), Fase 2 (FORSU e relva). Concluiu-se que a cinética do processo é influenciada pela relação entre as áreas de separação de biogás/biomassa (As) e de contacto biomassa/reactor (Ac), que interferem na geometria do reactor. Assim, através dos resultados das fases 1 e 2 pode observar-se que a variação da taxa de remoção de substrato se aproxima de uma função de saturação, pelo que se propõe uma adaptação do modelo de Monod, através de um formalismo que incorpora uma grandeza adimensional, Kcig, para reflectir o efeito da geometria do reactor. Verificou-se que a equação adoptada para Kcig se mostrou adequada, o que permitiu, através do modelo de Monod ajustado, estimar os valores de rx máx e Ks que se admite estarem mais próximos dos verdadeiros, embora se considere que apenas se pretende corrigi-los em função do efeito da geometria do reactor. Por outro lado, o estudo permitiu identificar um valor de Kcig para o reactor de 2,5 L, a partir do qual poderá não ser interessante a relação entre a taxa de remoção de substrato e a área de construção do reactor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o aumento das necessidades energéticas, bem como dos cada vez mais conhecidos efeitos nocivos dos combustíveis fósseis, tornou-se imperativo pesquisar e desenvolver alternativas sustentáveis e verdes a esses recursos. O biodiesel é considerado como o melhor substituto para o combustível diesel convencional de base petroquímica. A transesterificação de óleos vegetais revela-se como uma importante via de obtenção do biodiesel. Na produção de biodiesel com catalisadores básicos homogéneos, como o hidróxido de sódio, deparamo-nos com um problema na hidrólise de triglicéridos, levando à formação de sabões e emulsões. Mesmo quando são usados reagentes secos, há formação de água devido à reacção do hidróxido com o álcool. Estes problemas podem ser solucionados com a utilização de catalisadores heterogéneos. Este estudo incidiu na preparação de membranas catalíticas de álcool polivinílico (PVA) incorporadas com um catalisador heterogéneo sólido básico (óxido de cálcio) obtido de resíduos industriais (casca de ovo). Caracterizaram-se as membranas catalíticas através da determinação da espessura, ângulos de contacto, grau de inchamento e espectroscopia de infravermelho. As membranas de PVA foram testadas na metanólise de óleo de soja em reactor batch e reactor de membrana catalítica. Estudou-se o efeito da reticulação química e por irradiação gama, nas propriedades das membranas e na actividade catalítica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water is a limited resource for which demand is growing. Contaminated water from inadequate wastewater treatment provides one of the greatest health challenges as it restricts development and increases poverty in emerging and developing countries. Therefore, the connection between wastewater and human health is linked to access to sanitation and to human waste disposal. Adequate sanitation is expected to create a barrier between disposed human excreta and sources of drinking water. Different approaches to wastewater management are required for different geographical regions and different stages of economic governance depending on the capacity to manage wastewater. Effective wastewater management can contribute to overcome the challenges of water scarcity. Separate collection of human urine at its source is one promising approach that strongly reduces the economic and load demands on wastewater treatment plants (WWTP). Treatment of source-separated urine appears as a sanitation system that is affordable, produces a valuable fertiliser, reduces pollution of water resources and promotes health. However, the technical realisation of urine separation still faces challenges. Biological hydrolysis of urea causes a strong increase of ammonia and pH. Under these conditions ammonia volatilises which can cause odour problems and significant nitrogen losses. The above problems can be avoided by urine stabilisation. Biological nitrification is a suitable process for stabilisation of urine. Urine is a highly concentrated nutrient solution which can lead to strong inhibition effects during bacterial nitrification. This can further lead to process instabilities. The major cause of instability is accumulation of the inhibitory intermediate compound nitrite, which could lead to process breakdown. Enhanced on-line nitrite monitoring can be applied in biological source-separated urine nitrification reactors as a sustainable and efficient way to improve the reactor performance, avoiding reactor failures and eventual loss of biological activity. Spectrophotometry appears as a promising candidate for the development and application of on-line nitrite monitoring. Spectroscopic methods together with chemometrics are presented in this work as a powerful tool for estimation of nitrite concentrations. Principal component regression (PCR) is applied for the estimation of nitrite concentrations using an immersible UV sensor and off-line spectra acquisition. The effect of particles and the effect of saturation, respectively, on the UV absorbance spectra are investigated. The analysis allows to conclude that (i) saturation has a substantial effect on nitrite estimation; (ii) particles appear to have less impact on nitrite estimation. In addition, improper mixing together with instabilities in the urine nitrification process appears to significantly reduce the performance of the estimation model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O Grupo de Engenharia de Tecidos da FCT/UNL desenvolve e produz membranas poliméricas tubulares biodegradáveis que servem de substrato a culturas celulares e que se destinam a substituir temporariamente vasos sanguíneos danificados. O objectivo desta dissertação foi o desenvolvimento de um bio-reactor com a capacidade de bombeamento controlado de um fluido adequado à manutenção de uma cultura celular, que simula a passagem do fluxo sanguíneo pelo interior das membranas tubulares, permitindo que as células nelas semeadas recebam os estímulos adequados ao seu desenvolvimento. Foi construído um bio-reactor de perfusão pulsátil para cultura celular em membranas tubulares que é instalável numa incubadora, beneficiando assim de condições ambientais — pH, temperatura e humidade — semelhantes às fisiológicas. O bio-reactor é capaz de gerar estímulos mecânicos pulsáteis favoráveis ao alinhamento de células endoteliais e de músculo liso. O sistema foi desenvolvido de modo a que a pressão e o caudal aplicados às membranas pudessem ser monitorizados e controlados. Foram semeadas células endoteliais em matrizes planas de policaprolactona, tendo-se confirmado a sua adesão e proliferação por microscopia de fluorescência. Após enrolamento, obtiveram-se duas membranas tubulares com células endoteliais semeadas no lúmen. Uma delas foi submetida a cultura estática, e outra a cultura dinâmica no bio-reactor. Após 10 dias de condicionamento in vitro, as membranas foram novamente observadas por microscopia de fluorescência. Os resultados obtidos não foram conclusivos, pelo que serão necessários novos estudos para concluir se o bio-reactor construído é capaz de garantir o condicionamento mecânico das células semeadas nas matrizes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of devices based on heterostructured thin films of biomolecules conveys a huge contribution on biomedical field. However, to achieve high efficiency of these devices, the storage of water molecules into these heterostructures, in order to maintain the biological molecules hydrated, is mandatory. Such hydrated environment may be achieved with lipids molecules which have the ability to rearrange spontaneously into vesicles creating a stable barrier between two aqueous compartments. Yet it is necessary to find conditions that lead to the immobilization of whole vesicles on the heterostructures. In this work, the conditions that govern the deposition of open and closed liposomes of 1.2-dipalmitoyl-sn-Glycero-3-[Phospho-rac-(1-glycerol)] (sodium Salt) (DPPG) onto polyelectrolytes cushions prepared by the layer-by-layer (LbL) method were analyzed. Electronic transitions of DPPG molecules as well as absorption coefficients were obtained by vacuum ultraviolet spectroscopy, while the elemental composition of the heterostructures was characterized by x-ray photoelectron spectroscopy (XPS). The presence of water molecules in the films was inferred by XPS and infrared spectroscopy. Quartz crystal microbalance (QCM) data analysis allowed to conclude that, in certain cases, the DPPG adsorbed amount is dependent of the bilayers number already adsorbed. Moreover, the adsorption kinetics curves of both adsorbed amount and surface roughness allowed to determine the kinetics parameters that are related with adsorption processes namely, electrostatic forces, liposomes diffusion and lipids re-organization on surface. Scaling exponents attained from atomic force microscopy images statistical analysis demonstrate that DPPG vesicles adsorption mechanism is ruled by the diffusion Villain model confirming that adsorption is governed by electrostatic forces. The power spectral density treatment enabled a thorough description of the accessible surface of the samples as well as of its inner structural properties. These outcomes proved that surface roughness influences the adsorption of DPPG liposomes onto surfaces covered by a polyelectrolyte layer. Thus, low roughness was shown to induce liposome rupture creating a lipid bilayer while high roughness allows the adsorption of whole liposomes. In addition, the fraction of open liposomes calculated from the normalized maximum adsorbed amounts decreases with the cushion roughness increase, allowing us to conclude that the surface roughness is a crucial variable that governs the adsorption of open or whole liposomes. This conclusion is fundamental for the development of well-designed sensors based on functional biomolecules incorporated in liposomes. Indeed, LbL films composed of polyelectrolytes and liposomes with and without melanin encapsulated were successfully applied to sensors of olive oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The production of anti-Cryptosporidium polyclonal antibodies and its use in direct immunofluorescence assays to determine the presence of Cryptosporidium in water are described in the present work. METHODS: Two rabbits were immunized with soluble and particulate antigens from purified Cryptosporidium oocysts. The sera produced were prepared for immunoglobulin G extraction, which were then purified and conjugated with fluorescein isothiocyanate (FITC). Slides containing known amounts of oocysts were prepared to determine the sensitivity of the technique. To test the specificity, slides containing Giardia duodenalis cysts were prepared. RESULTS: The conjugate was successfully used in water samples experimentally contaminated with Cryptosporidium oocysts, and it was possible to detect up to five oocysts/spot, corresponding to contamination of 250 oocysts/mL. CONCLUSIONS: The three immunizations performed in the rabbits were enough to produce antibodies against Cryptosporidium, the standard direct immunofluorescence assay permitted the detection of five oocysts in 20% of the samples, and no cross-reaction with Giardia duodenalis cysts occurred.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction Cryptosporidium is an important protozoan cause of waterborne disease worldwide of concern to public health authorities. To prevent outbreaks of cryptosporidiosis, the monitoring of this parasite in drinking water is necessary. In the present work, the polymerase chain reaction (PCR) and nested-PCR techniques were used to detect Cryptosporidium in raw water from catchment points of four water treatment plants (WTP) in Curitiba, Paraná, Brazil. Methods First, DNA extraction techniques were tested in samples containing decreasing amount of oocysts in reagent water, and PCR and nested-PCR with specific primers for 18SSU rDNA of Cryptosporidium were conducted to determine their sensitivity. In reagent water, a commercial extraction kit provided the best analytical sensitivity, and PCR and nested-PCR allowed the detection of five and two oocysts, respectively, with the primers XIAOR/XIAOF and XIAO1F/XIAO2R. Results In the spiking experiments, only the PCR with the primers AWA995F/AWA1206R was successful at detecting concentrations of 0.1 oocysts/mL. Two catchments samples of raw water and/or water sludge from four WTPs were contaminated with Cryptosporidium. Conclusions The application of the techniques to monitor Cryptosporidium in water and detect contamination in water catchments of WTPs in Curitiba are discussed in the present work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper proposes to quantify the effect of social tariffs (ST) in the Portuguese water and waste sector (WWS). It calculates the amount of subsidy implicit in ST schemes, characterising the existing tariffs in 2011 and producing a synthetic tariff scene where the regulator’s recommendation is respected. This is the first time such an exercise is undertaken and it is very relevant in a context of deep economic crisis. Results suggest that there are fewer beneficiaries than what income eligibility criteria would imply and that putting the regulator’s recommendation in practice would considerably raise subsidy amounts, potentially leading to a severe increase in non-subsidised user tariffs to allow for break-even.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Self-assembly is a phenomenon that occurs frequently throughout the universe. In this work, two self-assembling systems were studied: the formation of reverse micelles in isooctane and in supercritical CO2 (scCO2), and the formation of gels in organic solvents. The goal was the physicochemical study of these systems and the development of an NMR methodology to study them. In this work, AOT was used as a model molecule both to comprehensively study a widely researched system water/AOT/isooctane at different water concentrations and to assess its aggregation in supercritical carbon dioxide at different pressures. In order to do so an NMR methodology was devised, in which it was possible to accurately determine hydrodynamic radius of the micelle (in agreement with DLS measurements) using diffusion ordered spectroscopy (DOSY), the micellar stability and its dynamics. This was mostly assessed by 1H NMR relaxation studies, which allowed to determine correlation times and size of correlating water molecules, which are in agreement with the size of the shell that interacts with the micellar layer. The encapsulation of differently-sized carbohydrates was also studied and allowed to understand the dynamics and stability of the aggregates in such conditions. A W/CO2 microemulsion was prepared using AOT and water in scCO2, with ethanol as cosurfactant. The behaviour of the components of the system at different pressures was assessed and it is likely that above 130 bar reverse microemulsions were achieved. The homogeneity of the system was also determined by NMR. The formation of the gel network by two small molecular organogelators in toluene-d8 was studied by DOSY. A methodology using One-shot DOSY to perform the spectra was designed and applied with success. This yielded an understanding about the role of the solvent and gelator in the aggregation process, as an estimation of the time of gelation.