990 resultados para Pr_(1-x)K_xMnO_3
Resumo:
MeV An irradiation leads to a shape change of polystyrene (PS) and SiO2 particles from spherical to ellipsoidal, with an aspect ratio that can be precisely controlled by the ion fluence. Sub-micrometer PS and SiO2 particles were deposited on copper substrates and irradiated with Au ions at 230 K, using an ion energy and fluence ranging from 2 to 10 MeV and 1 x 10(14) ions/cm(2) to 1 x 10(15) ions/cm(2). The mechanisms of anisotropic deformation of PS and SiO2 particles are different because of their distinct physical and chemical properties. At the start of irradiation, the volume of PS particles decrease, then the aspect ratio increases with fluence, whereas for SiO2 particles the volume remains constant. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present the analysis of uniaxial deformation of nickel nanowires using molecular dynamics simulations, and address the strain rate effects on mechanical responses and deformation behavior. The applied strain rate is ranging from 1 x 10(8) s(-1) to 1.4 x 10(11) s(-1). The results show that two critical strain rates, i.e., 5 x 10(9) s(-1) and 8 x 10(10) s(-1), are observed to play a pivotal role in switching between plastic deformation modes. At strain rate below 5 x 10(9) s(-1), Ni nanowire maintains its crystalline structure with neck occurring at the end of loading, and the plastic deformation is characterized by {111} slippages associated with Shockley partial dislocations and rearrangements of atoms close to necking region. At strain rate above 8x10(10) s(-1), Ni nanowire transforms from a fcc crystal into a completely amorphous state once beyond the yield point, and hereafter it deforms uniformly without obvious necking until the end of simulation. For strain rate between 5 x 10(9) s(-1) and 8 x 10(10) s(-1), only part of the nanowire exhibits amorphous state after yielding while the other part remains crystalline state. Both the {111} slippages in ordered region and homogenous deformation in amorphous region contribute to the plastic deformation. (C) 2007 Published by Elsevier B.V.
Resumo:
This paper presents the electromagnetic wave propagation characteristics in plasma and the attenuation coefficients of the microwave in terms of the parameters n(e), v, w, L, w(b). The phi800 mm high temperature shock tube has been used to produce a uniform plasma. In order to get the attenuation of the electromagnetic wave through the plasma behind a shock wave, the microwave transmission has been used to measure the relative change of the wave power. The working frequency is f = (2 similar to 35) GHz (w = 2pif, wave length lambda = 15 cm similar to 8 mm). The electron density in the plasma is n(e) = (3 x 10(10) similar to 1 x 10(14)) cm(-3). The collision frequency v = (1 x 10(8) similar to 6 x 10(10)) Hz. The thickness of the plasma layer L = (2 similar to 80) cm. The electron circular frequency w(b) = eB(0)/m(e), magnetic flux density B-0 = (0 similar to 0.84) T. The experimental results show that when the plasma layer is thick (such as L/lambda greater than or equal to 10), the correlation between the attenuation coefficients of the electromagnetic waves and the parameters n(e), v, w, L determined from the measurements are in good agreement with the theoretical predictions of electromagnetic wave propagations in the uniform infinite plasma. When the plasma layer is thin (such as when both L and lambda are of the same order), the theoretical results are only in a qualitative agreement with the experimental observations in the present parameter range, but the formula of the electromagnetic wave propagation theory in an uniform infinite plasma can not be used for quantitative computations of the correlation between the attenuation coefficients and the parameters n(e), v, w, L. In fact, if w < w(p), v(2) much less than w(2), the power attenuations K of the electromagnetic waves obtained from the measurements in the thin-layer plasma are much smaller than those of the theoretical predictions. On the other hand, if w > w(p), v(2) much less than w(2) (just v approximate to f), the measurements are much larger than the theoretical results. Also, we have measured the electromagnetic wave power attenuation value under the magnetic field and without a magnetic field. The result indicates that the value measured under the magnetic field shows a distinct improvement.
Resumo:
The Gal(1-x)Mn(x)Sb epilayer was prepared on the n-type GaSb substrate by liquid phase epitaxy. The structure of the Gal(1-x)Mn(x)Sb epilayer was analyzed by double-crystal X-ray diffraction. From the difference of the lattice constant between the GaSb substrate and the Ga1-xMnxSb epilayer, the Mn content in the Ga1-xMnxSb epilayer were calculated as x = 0.016. The elemental composition of Ga1-xMnxSb epilayer was analyzed by energy dispersive spectrometer. The carrier concentration was obtained by Hall measurement. The hole concentration in the Ga1-xMnxSb epilayer is 4.06 x 10(19)cm(-3). It indicates that most of the Mn atoms in Ga1-xMnxSb take the site of Ga, and play a role of acceptors. The current-voltage curve of the Ga1-xMnxSb/GaSb heterostructure was measured, and the rectifying effect is obvious. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
<正> 我们考虑非定线性方程组:Ax=b。 定理1 线性迭代法x~(k+1)=Sx~k+d,k=1,2,…对任意初值x~0都收敛的充要条件是: (1) x=Sx+d有解。
Resumo:
<正> 本文討論平板在流体中的一个振动問題:我們假設平板在x方向是無限長的(見岡1),而且在等間隔上裝有簡支鉸座,因而在这些簡支綫上平板的位移等于零。在板和与其平行的牆之間,有一不可压縮和無粘性的水流,它在X方向的流速是U。 这样一个由板和流体構成的振动体系具有一些特殊的振动特性。我們在本文討論这
Resumo:
采用一种新的生长铁磁 /半导体异质结材料的方法——物理气相沉积方法生长了一种铁磁 /半导体异质结材料 Mn Sb/Si.对所获得的样品进行特征 X射线能谱分析表明 Mn和 Sb在 Si衬底上的沉积速率相近 ,它们的原子百分数之比接近 1∶ 1.X射线衍射分析发现薄膜中形成了 Mn Sb相 ,样品在室温下测出磁滞回线也从侧面验证了存在 Mn Sb相 .用原子力显微镜对样品的表面进行观察 ,发现 Mn Sb呈有规则形状的小晶粒状 ,晶粒大小比较均匀 ,尺寸大多数在 5 0 0 nm左右 .
Resumo:
<正>本文讨论平板在流体中的一个振动问题:我们假设平板在x方向是无限长的(见图1),而且在等间隔上装有简支铰座,因而在这些简支线上平板的位移等于零。在板和与其平行的牆之间,有一不可压缩和无粘性的水流,它在x方向的流速是U。这样一个由板和流体构成的振动体系具有一些特殊的振动特性。我们在本文讨论这个体系的自由振动问题。除了给出它的自由振动形式和相应的频率外,并将分析在不同
Resumo:
ENGLISH: Seasonal changes in the climatology, oceanography and fisheries of the Panama Bight are determined mainly by the latitudinal movements of the ITCZ over the region. Evaporation is about 980 mm annually. Rainfall is probably much less than previous estimates because of a discontinuity in the ITCZ. Freshwater runoff from the northern watershed varies from 22 X 109 m3/mo in October-November to 11 X 109 m3/mo in February-March; from the southeastern watershed it varies from 16 X 109 m3/mo in April-June to 9 X 109 m3/mo in October-December. Total annual runoff is about 350 X 109m3. A marked salinity front is found at all seasons off the eastern shore. In the northern part of the Bight temperatures in the upper layers remained fairly constant from May to November; by February the mean temperature had decreased by 4°C and sharp gradients existed in the geographic distributions. Salinities in the upper layers decreased steadily from May to November; by February the mean salinity had increased by 2.5‰. The mean depth of the mixed layer increased from 27 m in May to 40 m in November; by February upwelling decreased it to 18 m. Between November and February upwelling had doubled the amount of P04-P and tripled that of NO3-N in the euphotic zone; surface phytoplankton production and standing crop, and zooplankton concentrations also doubled during this period. Upwelling was about 1.5 m/mo during May-November and about 9.0 m/mo during November-February, the annual total is about 48 m, Mean primary production is about 0.3 gC/m2day during May-December and about 0.6 gC/m2day during January-April; annual production is about 140 gC/m2. A thermal ridge occurred in February running from the northern to the southwestern part of the Bight. Within this ridge was a marked thermal dome coinciding with the center of the cyclonic circulation cell. Upwelling in the dome averaged 16 m/mo in November-February. The fisheries of the Panama Bight annually produce about 30,000 metric tons of food species and about 68,000 m.t. of species used for reduction. Most attempts to further the understanding of tuna ecology were unsuccessful. The apparent abundances of yellowfin and skipjack in the northern part of the Bight appear to be related to the seasonal cycle of upwelling and enrichment, as abundances are greatest in April and May when food appears to be plentiful. The life-cycle of the anchoveta in the Gulf of Panama also appears to be related to upwelling; the species mass varies from about 39,000 m.t. in December to about 169,000 m.t, in April. About 19.1 X 1012 anchoveta eggs are spawned annually. The life-cycles of shrimp in the Panama Bight appear to be related to upwelling as catches are greatest in May-July, about 3-5 months after peak upwelling, and annual catches are inversely correlated with sea level. SPANISH: Los cambios estacionales en la climatología, oceanografía y pesquerías del Panamá Bight están determinados principalmente por el movimiento latitudinal sobre la región de la Zona de Convergencia Intertropical (ZCIT). La evaporación es de unos 980 mm al año. La pluviosidad es probablemente muy inferior a las estimaciones previas a causa de la descontinuidad en la ZCIT. El drenaje de agua dulce, de la vertiente septentrional, varía de 22 x 109m3/mes en octubre-noviembre hasta 11 x 109m3/mes en febreromarzo; el de la vertiente sudeste varía de 16 x 109m3/mes en abril-junio a 9 x 109m3/mes en octubre-diciembre. El drenaje total, anual, es alrededor de 350 x 109m3. En todas las estaciones frente al litoral oriental se encuentra un frente de salinidad marcada. En la parte septentrional del Bight las temperaturas en las capas superiores permanecieron más bien constantes de mayo a noviembre; en febrero la temperatura media había disminuido en unos 4°C y existieron gradientes agudos en las distribuciones geográficas. Las salinidades en las capas superiores disminuyeron constantemente de mayo a noviembre; en febrero la salinidad media había aumentado en 2.5‰. La profundidad media de la capa mixta aumentó de 27 m en mayo a 40 m en noviembre; en febrero el afloramiento disminuyó el espesor de la capa mixta hasta 18 m. Entre noviembre y febrero el afloramiento había duplicado la cantidad de PO4-P y triplicado la de NO3-N en la zona eufótica; la producción superficial de fitoplancton y la biomasa primaria y las concentraciones de zooplancton también se duplicaron durante este período. El afloramiento era cerca de 1.5 mimes durante mayo-noviembre y de unos 9.0 mimes durante noviembre-febrero, el total anual es de unos 48 m. La producción media primaria es aproximadamente de 0.3 gC/m2 al día durante mayo-diciembre y cerca de 0.6 gC/m2 al día durante enero-abril; la producción anual es de unos 140 gC/m2. En febrero apareció una convexidad termal que se extendió de la parte norte a la parte sudoeste del Bight. Dentro de esta convexidad se encontró un domo termal marcado el cual coincidió con el centro de la circulación ciclonal de la célula. El afloramiento en el domo tuvo un promedio de 16 mimes en noviembre-febrero. Las pesquerías del Panamá Bight producen anualmente de cerca 30,000 toneladas métricas de especies alimenticias y unas 68,000 t.m. de especies usadas para la reducción. La mayoría de los esfuerzos realizados con el fin de adquirir más conocimiento sobre la ecología del atún no tuvo éxito. La abundancia aparente del atún aleta amarilla y del barrilete en la parte septentrional del Bight parece estar relacionada con el ciclo estacional del afloramiento y del enriquecimiento, ya que la abundancia mayor en abril y mayo cuando parece que hay abundancia es de alimento. El ciclo de vida de la anchoveta en el Golfo de Panamá parece también que está relacionada al afloramiento. La masa de la especie varía de unas 39,000 t.m. en diciembre a cerca de 169,000 t.m. en abril. Aproximadamente 19.1 x 1012 huevos de anchoveta son desovados anualmente. Los ciclos de vida del camarón en el Panamá Bight parecen estar relacionados con el afloramiento ya que las capturas son superiores en mayo-julio, unos 3-5 meses después del ápice del afloramiento, y las capturas anuales se correlacionan inversamente con el nivel del mar. (PDF contains 340 pages.)
Resumo:
<正>选择素(selectin)与其配体间相互作用介导的细胞粘附在炎症级联反应、肿瘤转移和淋巴细胞归巢等病理、生理过程中起重要作用[1]。X-ray衍射发现P-选择素的最小功
Resumo:
In Part I, a method for finding solutions of certain diffusive dispersive nonlinear evolution equations is introduced. The method consists of a straightforward iteration procedure, applied to the equation as it stands (in most cases), which can be carried out to all terms, followed by a summation of the resulting infinite series, sometimes directly and other times in terms of traces of inverses of operators in an appropriate space.
We first illustrate our method with Burgers' and Thomas' equations, and show how it quickly leads to the Cole-Hopft transformation, which is known to linearize these equations.
We also apply this method to the Korteweg and de Vries, nonlinear (cubic) Schrödinger, Sine-Gordon, modified KdV and Boussinesq equations. In all these cases the multisoliton solutions are easily obtained and new expressions for some of them follow. More generally we show that the Marcenko integral equations, together with the inverse problem that originates them, follow naturally from our expressions.
Only solutions that are small in some sense (i.e., they tend to zero as the independent variable goes to ∞) are covered by our methods. However, by the study of the effect of writing the initial iterate u_1 = u_(1)(x,t) as a sum u_1 = ^∼/u_1 + ^≈/u_1 when we know the solution which results if u_1 = ^∼/u_1, we are led to expressions that describe the interaction of two arbitrary solutions, only one of which is small. This should not be confused with Backlund transformations and is more in the direction of performing the inverse scattering over an arbitrary “base” solution. Thus we are able to write expressions for the interaction of a cnoidal wave with a multisoliton in the case of the KdV equation; these expressions are somewhat different from the ones obtained by Wahlquist (1976). Similarly, we find multi-dark-pulse solutions and solutions describing the interaction of envelope-solitons with a uniform wave train in the case of the Schrodinger equation.
Other equations tractable by our method are presented. These include the following equations: Self-induced transparency, reduced Maxwell-Bloch, and a two-dimensional nonlinear Schrodinger. Higher order and matrix-valued equations with nonscalar dispersion functions are also presented.
In Part II, the second Painleve transcendent is treated in conjunction with the similarity solutions of the Korteweg-de Vries equat ion and the modified Korteweg-de Vries equation.
Resumo:
Part I.
We have developed a technique for measuring the depth time history of rigid body penetration into brittle materials (hard rocks and concretes) under a deceleration of ~ 105 g. The technique includes bar-coded projectile, sabot-projectile separation, detection and recording systems. Because the technique can give very dense data on penetration depth time history, penetration velocity can be deduced. Error analysis shows that the technique has a small intrinsic error of ~ 3-4 % in time during penetration, and 0.3 to 0.7 mm in penetration depth. A series of 4140 steel projectile penetration into G-mixture mortar targets have been conducted using the Caltech 40 mm gas/ powder gun in the velocity range of 100 to 500 m/s.
We report, for the first time, the whole depth-time history of rigid body penetration into brittle materials (the G-mixture mortar) under 105 g deceleration. Based on the experimental results, including penetration depth time history, damage of recovered target and projectile materials and theoretical analysis, we find:
1. Target materials are damaged via compacting in the region in front of a projectile and via brittle radial and lateral crack propagation in the region surrounding the penetration path. The results suggest that expected cracks in front of penetrators may be stopped by a comminuted region that is induced by wave propagation. Aggregate erosion on the projectile lateral surface is < 20% of the final penetration depth. This result suggests that the effect of lateral friction on the penetration process can be ignored.
2. Final penetration depth, Pmax, is linearly scaled with initial projectile energy per unit cross-section area, es , when targets are intact after impact. Based on the experimental data on the mortar targets, the relation is Pmax(mm) 1.15es (J/mm2 ) + 16.39.
3. Estimation of the energy needed to create an unit penetration volume suggests that the average pressure acting on the target material during penetration is ~ 10 to 20 times higher than the unconfined strength of target materials under quasi-static loading, and 3 to 4 times higher than the possible highest pressure due to friction and material strength and its rate dependence. In addition, the experimental data show that the interaction between cracks and the target free surface significantly affects the penetration process.
4. Based on the fact that the penetration duration, tmax, increases slowly with es and does not depend on projectile radius approximately, the dependence of tmax on projectile length is suggested to be described by tmax(μs) = 2.08es (J/mm2 + 349.0 x m/(πR2), in which m is the projectile mass in grams and R is the projectile radius in mm. The prediction from this relation is in reasonable agreement with the experimental data for different projectile lengths.
5. Deduced penetration velocity time histories suggest that whole penetration history is divided into three stages: (1) An initial stage in which the projectile velocity change is small due to very small contact area between the projectile and target materials; (2) A steady penetration stage in which projectile velocity continues to decrease smoothly; (3) A penetration stop stage in which projectile deceleration jumps up when velocities are close to a critical value of ~ 35 m/s.
6. Deduced averaged deceleration, a, in the steady penetration stage for projectiles with same dimensions is found to be a(g) = 192.4v + 1.89 x 104, where v is initial projectile velocity in m/s. The average pressure acting on target materials during penetration is estimated to be very comparable to shock wave pressure.
7. A similarity of penetration process is found to be described by a relation between normalized penetration depth, P/Pmax, and normalized penetration time, t/tmax, as P/Pmax = f(t/tmax, where f is a function of t/tmax. After f(t/tmax is determined using experimental data for projectiles with 150 mm length, the penetration depth time history for projectiles with 100 mm length predicted by this relation is in good agreement with experimental data. This similarity also predicts that average deceleration increases with decreasing projectile length, that is verified by the experimental data.
8. Based on the penetration process analysis and the present data, a first principle model for rigid body penetration is suggested. The model incorporates the models for contact area between projectile and target materials, friction coefficient, penetration stop criterion, and normal stress on the projectile surface. The most important assumptions used in the model are: (1) The penetration process can be treated as a series of impact events, therefore, pressure normal to projectile surface is estimated using the Hugoniot relation of target material; (2) The necessary condition for penetration is that the pressure acting on target materials is not lower than the Hugoniot elastic limit; (3) The friction force on projectile lateral surface can be ignored due to cavitation during penetration. All the parameters involved in the model are determined based on independent experimental data. The penetration depth time histories predicted from the model are in good agreement with the experimental data.
9. Based on planar impact and previous quasi-static experimental data, the strain rate dependence of the mortar compressive strength is described by σf/σ0f = exp(0.0905(log(έ/έ_0) 1.14, in the strain rate range of 10-7/s to 103/s (σ0f and έ are reference compressive strength and strain rate, respectively). The non-dispersive Hugoniot elastic wave in the G-mixture has an amplitude of ~ 0.14 GPa and a velocity of ~ 4.3 km/s.
Part II.
Stress wave profiles in vitreous GeO2 were measured using piezoresistance gauges in the pressure range of 5 to 18 GPa under planar plate and spherical projectile impact. Experimental data show that the response of vitreous GeO2 to planar shock loading can be divided into three stages: (1) A ramp elastic precursor has peak amplitude of 4 GPa and peak particle velocity of 333 m/s. Wave velocity decreases from initial longitudinal elastic wave velocity of 3.5 km/s to 2.9 km/s at 4 GPa; (2) A ramp wave with amplitude of 2.11 GPa follows the precursor when peak loading pressure is 8.4 GPa. Wave velocity drops to the value below bulk wave velocity in this stage; (3) A shock wave achieving final shock state forms when peak pressure is > 6 GPa. The Hugoniot relation is D = 0.917 + 1.711u (km/s) using present data and the data of Jackson and Ahrens [1979] when shock wave pressure is between 6 and 40 GPa for ρ0 = 3.655 gj cm3 . Based on the present data, the phase change from 4-fold to 6-fold coordination of Ge+4 with O-2 in vitreous GeO2 occurs in the pressure range of 4 to 15 ± 1 GPa under planar shock loading. Comparison of the shock loading data for fused SiO2 to that on vitreous GeO2 demonstrates that transformation to the rutile structure in both media are similar. The Hugoniots of vitreous GeO2 and fused SiO2 are found to coincide approximately if pressure in fused SiO2 is scaled by the ratio of fused SiO2to vitreous GeO2 density. This result, as well as the same structure, provides the basis for considering vitreous Ge02 as an analogous material to fused SiO2 under shock loading. Experimental results from the spherical projectile impact demonstrate: (1) The supported elastic shock in fused SiO2 decays less rapidly than a linear elastic wave when elastic wave stress amplitude is higher than 4 GPa. The supported elastic shock in vitreous GeO2 decays faster than a linear elastic wave; (2) In vitreous GeO2 , unsupported shock waves decays with peak pressure in the phase transition range (4-15 GPa) with propagation distance, x, as α 1/x-3.35 , close to the prediction of Chen et al. [1998]. Based on a simple analysis on spherical wave propagation, we find that the different decay rates of a spherical elastic wave in fused SiO2 and vitreous GeO2 is predictable on the base of the compressibility variation with stress under one-dimensional strain condition in the two materials.
Resumo:
This thesis details the investigations of the unconventional low-energy quasiparticle excitations in electron-type cuprate superconductors and electron-type ferrous superconductors as well as the electronic properties of Dirac fermions in graphene and three-dimensional strong topological insulators through experimental studies using spatially resolved scanning tunneling spectroscopy (STS) experiments.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type cuprate La0.1Sr0.9CuO2 (La-112) TC = 43 K, are investigated experimentally. For temperature (T) less than the superconducting transition temperature (TC), and in zero field, the quasiparticle spectra of La-112 exhibits gapped behavior with two coherence peaks and no satellite features. For magnetic field measurements at T < TC, first ever observation of vortices in La-112 are reported. Moreover, pseudogap-like spectra are revealed inside the core of vortices, where superconductivity is suppressed. The intra-vortex pseudogap-like spectra are characterized by an energy gap of VPG = 8.5 ± 0.6 meV, while the inter-vortex quasiparticle spectra shows larger peak-to-peak gap values characterized by Δpk-pk(H) >VPG, and Δpk-pk (0)=12.2 ± 0.8 meV > Δpk-pk (H > 0). The quasiparticle spectra are found to be gapped at all locations up to the highest magnetic field examined (H = 6T) and reveal an apparent low-energy cutoff at the VPG energy scale.
Magnetic-field- and temperature-dependent evolution of the spatially resolved quasiparticle spectra in the electron-type "122" iron-based Ba(Fe1-xCox)2As2 are investigated for multiple doping levels (x = 0.06, 0.08, 0.12 with TC= 14 K, 24 K, and 20 K). For all doping levels and the T < TC, two-gap superconductivity is observed. Both superconducting gaps decrease monotonically in size with increasing temperature and disappear for temperatures above the superconducting transition temperature, TC. Magnetic resonant modes that follow the temperature dependence of the superconducting gaps have been identified in the tunneling quasiparticle spectra. Together with quasiparticle interference (QPI) analysis and magnetic field studies, this provides strong evidence for two-gap sign-changing s-wave superconductivity.
Additionally spatial scanning tunneling spectroscopic studies are performed on mechanically exfoliated graphene and chemical vapor deposition grown graphene. In all cases lattice strain exerts a strong influence on the electronic properties of the sample. In particular topological defects give rise to pseudomagnetic fields (B ~ 50 Tesla) and charging effects resulting in quantized conductance peaks associated with the integer and fractional Quantum Hall States.
Finally, spectroscopic studies on the 3D-STI, Bi2Se3 found evidence of impurity resonance in the surface state. The impurities are in the unitary limit and the spectral resonances are localized spatially to within ~ 0.2 nm of the impurity. The spectral weight of the impurity resonance diverges as the Fermi energy approaches the Dirac point and the rapid recovery of the surface state suggests robust topological protection against perturbations that preserve time reversal symmetry.
Resumo:
A composite stock of alkaline gabbro and syenite is intrusive into limestone of the Del Carmen, Sue Peake and Santa Elena Formations at the northwest end of the Christmas Mountains. There is abundant evidence of solution of wallrock by magma but nowhere are gabbro and limestone in direct contact. The sequence of lithologies developed across the intrusive contact and across xenoliths is gabbro, pyroxenite, calc-silicate skarn, marble. Pyroxenite is made up of euhedral crystals of titanaugite and sphene in a leucocratic matrix of nepheline, Wollastonite and alkali feldspar. The uneven modal distribution of phases in pyroxenite and the occurrence' of nepheline syenite dikes, intrusive into pyroxenite and skarn, suggest that pyroxenite represents an accumulation of clinopyroxene "cemented" together by late-solidifying residual magma of nepheline syenite composition. Assimilation of limestone by gabbroic magma involves reactions between calcite and magma and/or crystals in equilibrium with magma and crystallization of phases in which the magma is saturated, to supply energy for the solution reaction. Gabbroic magma was saturated with plagioclase and clinopyroxene at the time of emplacement. The textural and mineralogic features of pyroxenite can be produced by the reaction 2( 1-X) CALCITE + ANXABl-X = (1-X) NEPHELINE+ 2(1-X) WOLLASTONITE+ X ANORTHITE+ 2(1-X) CO2. Plagioclase in pyroxenite has corroded margins and is rimmed by nepheline, suggestive of resorption by magma. Anorthite and wollastonite enter solid solution in titanaugite. For each mole of calcite dissolved, approximately one mole of clinopyroxene was crystallized. Thus the amount of limestone that may be assimilated is limited by the concentration of potential clinopyroxene in the magma. Wollastonite appears as a phase when magma has been depleted in iron and magnesium by crystallization of titanaugite. The predominance of mafic and ultramafic compositions among contaminated rocks and their restriction to a narrow zone along the intrusive contact provides little evidence for the generation of a significant volume of desilicated magma as a result of limestone assimilation.
Within 60 m of the intrusive contact with the gabbro, nodular chert in the Santa Elena Limestone reacted with the enveloping marble to form spherical nodules of high-temperature calc-silicate minerals. The phases wollastonite, rankinite, spurrite, tilleyite and calcite, form a series of sharply-bounded, concentric monomineralic and two-phase shells which record a step-wise decrease in silica content from the core of a nodule to its rim. Mineral zones in the nodules vary 'with distance from the gabbro as follows:
0-5 m CALCITE + SPURRITE + RANKINITE + WOLLASTONITE
5-16 m CALCITE + TILLEYITE ± SPURRITE + RANKINITE + WOLLASTONITE
16-31 m CALCITE + TILLEYITE + WOLLASTONITE
31-60 m CALCITE + WOLLASTONITE
60-plus CALCITE + QUARTZ
The mineral of a one-phase zone is compatible with the phases bounding it on either side but these phases are incompatible in the same volume of P-T-XCO2.
Growth of a monomineralio zone is initiated by reaction between minerals of adjacent one-phase zones which become unstable with rising temperature to form a thin layer of a new single phase that separates the reactants and is compatible with both of them. Because the mineral of the new zone is in equilibrium with the phases at both of its contacts, gradients in the chemical potentials of the exchangeable components are established across it. Although zone boundaries mark discontinuities in the gradients of bulk composition, two-phase equilibria at the contacts demonstrate that the chemical potentials are continuous. Hence, Ca, Si and CO2 were redistributed in the growing nodule by diffusion. A monomineralic zone grows at the expense of an adjacent zone by reaction between diffusing components and the mineral of the adjacent zone. Equilibria between two phases at zone boundaries buffers the chemical potentials of the diffusing species. Thus, within a monomineralic zone, the chemical potentials of the diffusing components are controlled external to the local assemblage by the two-phase equilibria at the zone boundaries.
Mineralogically zoned calc-silicate skarn occurs as a narrow band that separates pyroxenite and marble along the intrusive contact and forms a rim on marble xenoliths in gabbro. Skarn consists of melilite or idocrase pseudomorphs of melili te, one or two . stoichiometric calcsilicate phases and accessory Ti-Zr garnet, perovskite and magnetite. The sequence of mineral zones from pyroxenite to marble, defined by a characteristic calc-silicate, is wollastonite, rankinite, spurrite, calcite. Mineral assemblages of adjacent skarn zones are compatible and the set of zones in a skarn band defines a facies type, indicating that the different mineral assemblages represent different bulk compositions recrystallized under identical conditions. The number of phases in each zone is less than the number that might be expected to result from metamorphism of a general bulk composition under conditions of equilibrium, trivariant in P, T and uCO2. The "special" bulk composition of each zone is controlled by reaction between phases of the zones bounding it on either side. The continuity of the gradients of composition of melilite and garnet solid solutions across the skarn is consistent with the local equilibrium hypothesis and verifies that diffusion was the mechanism of mass transport. The formula proportions of Ti and Zr in garnet from skarn vary antithetically with that of Si Which systematically decreases from pyroxenite to marble. The chemical potential of Si in each skarn zone was controlled by the coexisting stoichiometric calc-silicate phases in the assemblage. Thus the formula proportion of Si in garnet is a direct measure of the chemical potential of Si from point to point in skarn. Reaction between gabbroic magma saturated with plagioclase and clinopyroxene produced nepheline pyroxenite and melilite-wollastonite skarn. The calcsilicate zones result from reaction between calcite and wollastonite to form spurrite and rankinite.
Resumo:
Effective diode-pumped cw tunable laser action of a new alloyed crystal Yb:Gd(2(1-)x) Y2xSiO5 (Yb:GYSO, x = 0.5) is demonstrated for the first time. The alloyed crystal retains excellent laser properties of Gd2SiO5 (GSO), as well as the favorable growth properties and the desirable physical of Y2SiO5 (YSO). With a 5-at.% Yb: GYSO sample, we achieved 2.44 W output power at 1081.5 nm and a slope efficiency of 57%. And its laser wavelength could be tuned from 1030nm to 1089 nm. (c) 2006 Optical Society of America.