922 resultados para Potassium tert-butoxide
Resumo:
A spectrophotometric method for the simultaneous determination of the important pharmaceuticals, pefloxacin and its structurally similar metabolite, norfloxacin, is described for the first time. The analysis is based on the monitoring of a kinetic spectrophotometric reaction of the two analytes with potassium permanganate as the oxidant. The measurement of the reaction process followed the absorbance decrease of potassium permanganate at 526 nm, and the accompanying increase of the product, potassium manganate, at 608 nm. It was essential to use multivariate calibrations to overcome severe spectral overlaps and similarities in reaction kinetics. Calibration curves for the individual analytes showed linear relationships over the concentration ranges of 1.0–11.5 mg L−1 at 526 and 608 nm for pefloxacin, and 0.15–1.8 mg L−1 at 526 and 608 nm for norfloxacin. Various multivariate calibration models were applied, at the two analytical wavelengths, for the simultaneous prediction of the two analytes including classical least squares (CLS), principal component regression (PCR), partial least squares (PLS), radial basis function-artificial neural network (RBF-ANN) and principal component-radial basis function-artificial neural network (PC-RBF-ANN). PLS and PC-RBF-ANN calibrations with the data collected at 526 nm, were the preferred methods—%RPET not, vert, similar 5, and LODs for pefloxacin and norfloxacin of 0.36 and 0.06 mg L−1, respectively. Then, the proposed method was applied successfully for the simultaneous determination of pefloxacin and norfloxacin present in pharmaceutical and human plasma samples. The results compared well with those from the alternative analysis by HPLC.
Resumo:
This thesis is a study of naturally occurring radioactive materials (NORM) activity concentration, gamma dose rate and radon (222Rn) exhalation from the waste streams of large-scale onshore petroleum operations. Types of activities covered included; sludge recovery from separation tanks, sludge farming, NORM storage, scaling in oil tubulars, scaling in gas production and sedimentation in produced water evaporation ponds. Field work was conducted in the arid desert terrain of an operational oil exploration and production region in the Sultanate of Oman. The main radionuclides found were 226Ra and 210Pb (238U - series), 228Ra and 228Th (232Th - series), and 227Ac (235U - series), along with 40K. All activity concentrations were higher than the ambient soil level and varied over several orders of magnitude. The range of gamma dose rates at a 1 m height above ground for the farm treated sludge had a range of 0.06 0.43 µSv h 1, and an average close to the ambient soil mean of 0.086 ± 0.014 µSv h 1, whereas the untreated sludge gamma dose rates had a range of 0.07 1.78 µSv h 1, and a mean of 0.456 ± 0.303 µSv h 1. The geometric mean of ambient soil 222Rn exhalation rate for area surrounding the sludge was mBq m 2 s 1. Radon exhalation rates reported in oil waste products were all higher than the ambient soil value and varied over three orders of magnitude. This study resulted in some unique findings including: (i) detection of radiotoxic 227Ac in the oil scales and sludge, (ii) need of a new empirical relation between petroleum sludge activity concentrations and gamma dose rates, and (iii) assessment of exhalation of 222Rn from oil sludge. Additionally the study investigated a method to determine oil scale and sludge age by the use of inherent behaviour of radionuclides as 228Ra:226Ra and 228Th:228Ra activity ratios.
Resumo:
The industrial application of kaolinite is closely related to its reactivity and surface properties. The reactivity of kaolinite can be tested by intercalation, i.e. via the insertion of low molecular weight organic compounds between the kaolinite layers resulting in the formation of a nano-layered organo-complex. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on the reactivity of different kaolinites, the mechanism of complex formation as well as on the structure of the complexes formed. Grafting and incorporation of exfoliated kaolinite in polymer matrices and other potential applications can open new horizons in the study of kaolinite intercalation. This paper attempts to summarize (without completion) the most recent achievements in the study of kaolinite organo-complexes obtained with the most common intercalating compounds like urea, potassium acetate, dimethyl sulphoxide, formamide and hydrazine using vibrational spectroscopy combined with X-ray powder diffraction and thermal analysis.
Resumo:
1,2-Bis[10,15-di(3,5-di-tert-butyl)phenylporphyrinatonickel(II)-5-yl]diazene was synthesised via copper catalysed coupling of aminated nickel(II) 5,10-diarylporphyrin (“corner porphyrin”) and its X-ray crystal structure was determined. Two different crystals yielded different structures, one with the free meso positions in a trans-like orientation, and the other with a cis-like disposition. The free meso positions of the obtained dimer have been further functionalised while the synthesis of a zinc analogue has so far been unsuccessful. The X-ray crystal structure of the dinitro derivative of the dinickel(II) azoporphyrin was determined, and the structure showed a cis-like disposition of the nitro groups.
Resumo:
Zeolite N was produced from a variety of kaolinites and montmorillonites at low temperature (b100 °C) in a constantly stirred reactor using potassic and potassic+sodic mother liquors with chloride or hydroxyl anions. Reactions were complete (N95% product) in less than 20 h depending on initial batch composition and type of clay minerals. Zeolite N with 1.0bSi/Alb2.2 was produced under these conditions using KOH in the presence of KCl, NaCl, KCl+NaCl and KCl+NaOH. Zeolite N was also formed under high potassium molarities in the absence of KCl. Zeolite synthesis was more sensitive to water content and temperature when sodium was used in initial batch compositions. Syntheses of zeolite N by these methods were undertaken at bench, pilot and industrial scales.
Resumo:
The indoline dyes D102, D131, D149, and D205 have been characterized when adsorved on fluorine-doped tin oxide (FTO) and TiO2 electrode surfaces. Adsorption from 50:50 acetonitrile - tert-butanol onto flourine-doped tin oxide (FTO) allows approximate Langmuirian binding constants of 6.5 x 10(4), 2.01 x 10(3), 2.0 x 10(4), and 1.5 x 10(4) mol-1 dm3, respectively, to be determined. Voltammetric data obtained in acetonitrile/0.1 M NBu4PF6 indicate reversible on-electron oxidation at Emid = 0.94, 0.91, 0.88, and 0.88 V vs Ag/AgCI(3 M KCI), respectively, with dye aggregation (at high coverage) causing additional peak features at more positive potentials. Slow chemical degradation processes and electron transfer catalysis for iodine oxidation were observed for all four oxidezed indolinium cations. When adsorbed onto TiO2 nanoparticle films (ca. 9nm particle diameter and ca.3/um thickness of FTO0, reversible voltammetric responses with Emid = 1.08, 1.156, 0.92 and 0.95 V vs Ag/AgCI(3 M KCI), respectively, suggest exceptionally fast hole hopping diffusion (with Dapp > 5 x 10(-9) m2 s-1) for adsorbed layers of four indoline dyes, presumably due to pie-pie stacking in surface aggregates. Slow dye degradation is shown to affect charge transport via electron hopping. Spectrelectrochemical data for the adsorbed indoline dyes on FTO-TiO2 revealed a red-shift of absorption peaks after oxidation and the presence of a strong charge transfer band in the near-IR region. The implications of the indoline dye reactivity and fast hole mobility for solar cell devices are discussed.
Resumo:
Computational models for cardiomyocyte action potentials (AP) often make use of a large parameter set. This parameter set can contain some elements that are fitted to experimental data independently of any other element, some elements that are derived concurrently with other elements to match experimental data, and some elements that are derived purely from phenomenological fitting to produce the desired AP output. Furthermore, models can make use of several different data sets, not always derived for the same conditions or even the same species. It is consequently uncertain whether the parameter set for a given model is physiologically accurate. Furthermore, it is only recently that the possibility of degeneracy in parameter values in producing a given simulation output has started to be addressed. In this study, we examine the effects of varying two parameters (the L-type calcium current (I(CaL)) and the delayed rectifier potassium current (I(Ks))) in a computational model of a rabbit ventricular cardiomyocyte AP on both the membrane potential (V(m)) and calcium (Ca(2+)) transient. It will subsequently be determined if there is degeneracy in this model to these parameter values, which will have important implications on the stability of these models to cell-to-cell parameter variation, and also whether the current methodology for generating parameter values is flawed. The accuracy of AP duration (APD) as an indicator of AP shape will also be assessed.
Resumo:
A simple and efficient route for the synthesis of cyclic polymer systems is presented. Linear furan protected α-maleimide-ω-cyclopentadienyl functionalized precursors (poly(methyl methacrylate) and poly(tert-butyl acrylate)) were synthesized via atom transfer radical polymerization (ATRP) and subsequent substitution of the bromine end-group with cyclopentadiene. Upon heating at high dilution, deprotection of the dieneophile occurs followed by an intramolecular Diels–Alder reaction yielding a high purity cyclic product.
Resumo:
Zeolite N, a zeolite referred to in earlier publications as MesoLite, is made by caustic reaction of kaolin at temperatures between 80 °C and 95 °C. This material has a very high cation exchange capacity (CEC ≈ 500 meq/100 g). Soil column leaching experiments have shown that K-zeolite N additions greatly reduce leaching of NH4+ fertilisers but the agronomic effectiveness of the retained K+ and NH4+ is unknown. To measure the bioavailability of K in this zeolite, wheat was grown in a glasshouse with K-zeolite N as the K fertiliser in highly-leached and non-leached pots for four weeks and compared with a soluble K fertiliser (KCl). The plants grown in non-leached pots and fertilised with K-zeolite N were slightly larger than those grown with KCl. The elemental compositions in the plants were similar except for Si being significantly more concentrated in the plants supplied with K-zeolite N. Thus K-zeolite N may be an effective K-fertiliser. Plants grown in highly-leached pots were significantly smaller than those grown in non-leached pots. Plants grown in highly-leached pots were severely K deficient as half of the K from both KCl and K-zeolite N was leached from the pots within three days.
Resumo:
Homo-and heteronuclear meso,meso-(E)-ethene-1,2-diyl-linked diporphyrins have been prepared by the Suzuki coupling of porphyrinylboronates and iodovinylporphyrins. Combinations comprising 5,10,15-triphenylporphyrin (TriPP) on both ends of the ethene-1,2-diyl bridge M 210 (M 2=H 2/Ni, Ni 2, Ni/Zn, H 4, H 2Zn, Zn 2) and 5,15-bis(3,5-di-tert-butylphenyl)porphyrinato-nickel(II) on one end and H 2, Ni, and ZnTriPP on the other (M 211), enable the first studies of this class of compounds possessing intrinsic polarity. The compounds were characterized by electronic absorption and steady state emission spectra, 1H NMR spectra, and for the Ni 2 bis(TriPP) complex Ni 210, single crystal X-ray structure determination. The crystal structure shows ruffled distortions of the porphyrin rings, typical of Ni II porphyrins, and the (E)-C 2H 2 bridge makes a dihedral angle of 50° with the mean planes of the macrocycles. The result is a stepped parallel arrangement of the porphyrin rings. The dihedral angles in the solid state reflect the interplay of steric and electronic effects of the bridge on interporphyrin communication. The emission spectra in particular, suggest energy transfer across the bridge is fast in conformations in which the bridge is nearly coplanar with the rings. Comparisons of the fluorescence behaviour of H 410 and H 2Ni10 show strong quenching of the free base fluorescence when the complex is excited at the lower energy component of the Soret band, a feature associated in the literature with more planar conformations. TDDFT calculations on the gas-phase optimized geometry of Ni 210 reproduce the features of the experimental electronic absorption spectrum within 0.1 eV. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
The kaolinite intercalation and its application in polymer-based functional composites have attracted great interest, both in industry and in academia fields, since they frequently exhibit remarkable improvements in materials properties compared with the virgin polymer or conventional micro and macro-composites. Also of significant interest regarding the kaolinite intercalation complex is its thermal behavior and decomposition. This is because heating treatment of intercalated kaolinite is necessary for its further application, especially in the field of plastic and rubber industry. Although intercalation of kaolinite is an old and ongoing research topic, there is a limited knowledge available on kaolinite intercalation with different reagents, the mechanism of intercalation complex formation as well as on thermal behavior and phase transition. This review attempts to summarize the most recent achievements in the thermal behavior study of kaolinite intercalation complexes obtained with the most common reagents including potassium acetate, formamide, dimethyl sulfoxide, hydrazine and urea. At the end of this paper, the further work on kaolinite intercalation complex was also proposed.
Resumo:
The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.
Resumo:
Differences in the NMR detectability of 39K in various excised rat tissues (liver, brain, kidney, muscle, and testes) have been observed. The lowest NMR detectability occurs for liver (61 ± 3% of potassium as measured by flame photometry) and highest for erythrocytes (100 ± 7%). These differences in detectability correlate with differences in the measured 39K NMR relaxation constants in the same tissues. 39K detectabilities were also found to correlate inversely with the mitochondrial content of the tissues. Mitochondria prepared from liver showed greatly reduced 39K NMR detectability when compared with the tissue from which it was derived, 31.6 ± 9% of potassium measured by flame photometry compared to 61 ± 3%. The detectability of potassium in mitochondria was too low to enable the measurement of relaxation constants. This study indicates that differences in tissue structure, particularly mitochondrial content are important in determining 39K detectability and measured relaxation rates.
Resumo:
The quadrupole coupling constants (qcc) for39K and23Na ions in glycerol have been calculated from linewidths measured as a function of temperature (which in turn results in changes in solution viscosity). The qcc of39K in glycerol is found to be 1.7 MHz, and that of23Na is 1.6 MHz. The relaxation behavior of39K and23Na ions in glycerol shows magnetic field and temperature dependence consistent with the equations for transverse relaxation more commonly used to describe the reorientation of nuclei in a molecular framework with intramolecular field gradients. It is shown, however, that τc is not simply proportional to the ratio of viscosity/temperature (ηT). The 39K qcc in glycerol and the value of 1.3 MHz estimated for this nucleus in aqueous solution are much greater than values of 0.075 to 0.12 MHz calculated from T2 measurements of39K in freshly excised rat tissues. This indicates that, in biological samples, processes such as exchange of potassium between intracellular compartments or diffusion of ions through locally ordered regions play a significant role in determining the effective quadrupole coupling constant and correlation time governing39K relaxation. T1 and T2 measurements of rat muscle at two magnetic fields also indicate that a more complex correlation function may be required to describe the relaxation of39K in tissue. Similar results and conclusions are found for23Na.