995 resultados para Platzer, Hans-Wolfgang.
Resumo:
An 1180-cm long core recovered from Lake Lyadhej-To (68°15'N, 65°45'E, 150 m a.s.l.) at the NW rim of the Polar Urals Mountains reflects the Holocene environmental history from ca. 11,000 cal. yr BP. Pollen assemblages from the diamicton (ca. 11,000-10,700 cal. yr BP) are dominated by Pre-Quaternary spores and redeposited Pinaceae pollen, pointing to a high terrestrial input. Turbid and nutrient-poor conditions existed in the lake ca. 10,700-10,550 cal. yr BP. The chironomid-inferred reconstructions suggest that mean July temperature increased rapidly from 10.0 to 11.8 °C during this period. Sparse, treeless vegetation dominated on the disturbed and denuded soils in the catchment area. A distinct dominance of planktonic diatoms ca. 10,500-8800 cal. yr BP points to the lowest lake-ice coverage, the longest growing season and the highest bioproductivity during the lake history. Birch forest with some shrub alder grew around the lake reflecting the warmest climate conditions during the Holocene. Mean July temperature was likely 11-13 °C and annual precipitation-400-500 mm. The period ca. 8800-5500 cal. yr BP is characterized by a gradual deterioration of environmental conditions in the lake and lake catchment. The pollen- and chironomid-inferred temperatures reflect a warm period (ca. 6500-6000 cal. BP) with a mean July temperature at least 1-2 °C higher than today. Birch forests disappeared from the lake vicinity after 6000 cal. yr BP. The vegetation in the Lyadhej-To region became similar to the modern one. Shrub (Betula nana, Salix) and herb tundra have dominated the lake catchment since ca. 5500 cal. yr BP. All proxies suggest rather harsh environmental conditions. Diatom assemblages reflect relatively short growing seasons and a longer persistence of lake-ice ca. 5500-2500 cal. yr BP. Pollen-based climate reconstructions suggest significant cooling between ca. 5500 and 3500 cal. yr BP with a mean July temperature 8-10 °C and annual precipitation-300-400 mm. The bioproductivity in the lake remained low after 2500 cal. yr BP, but biogeochemical proxies reflect a higher terrestrial influx. Changes in the diatom content may indicate warmer water temperatures and a reduced ice cover on the lake. However, chironomid-based reconstructions reflect a period with minimal temperatures during the lake history.
Resumo:
This synthesis dataset contains records of freshwater peat and lake sediments from continental shelves and coastal areas. Information included is site location (when available), thickness and description of terrestrial sediments as well as underlying and overlying sediments, dates (when available), and references.
Resumo:
Samoylov Island is centrally located within the Lena River Delta at 72° N, 126° E and lies within the Siberian zone of continuous permafrost. The landscape on Samoylov Island consists mainly of late Holocene river terraces with polygonal tundra, ponds and lakes, and an active floodplain. The island has been the focus of numerous multidisciplinary studies since 1993, which have focused on climate, land cover, ecology, hydrology, permafrost and limnology. This paper aims to provide a framework for future studies by describing the characteristics of the island's meteorological parameters (temperature, radiation and snow cover), soil temperature, and soil moisture. The land surface characteristics have been described using high resolution aerial images in combination with data from ground-based observations. Of note is that deeper permafrost temperatures have increased between 0.3 to 1.3 °C over the last five years. However, no clear warming of air and active layer temperatures is detected since 1998, though winter air temperatures during recent years have not been as cold as in earlier years.
Resumo:
Oxygen-isotope records from Greenland ice cores indicate numerous rapid climate fluctuations during the last glacial period. North Atlantic marine sediment cores show comparable variability in sea surface temperature and the deposition of icerafted debris. In contrast, very few continental records of this time period provide the temporal resolution and environmental sensitivity necessary to reveal the extent and effects of these environmental fluctuations on the continents. Here we present high-resolution geochemical, physical and pollen data from lake sediments in Italy and from a Mediterranean sediment core, linked by a common tephrochronology. Our lacustrine sequence extends to the past 102,000 years. Many of its features correlate well with the Greenland ice-core records, demonstrating that the closely coupled ocean-atmosphere system of the Northern Hemisphere during the last glacial extended its influence at least as far as the central Mediterranean region. Numerous vegetation changes were rapid, frequently occurring in less than 200 years, showing that the terrestrial biosphere participated fully in lastglacial climate variability. Earlier than 65,000 years ago, our record shows more climate fluctuations than are apparent in the Greenland ice cores. Together, the multi-proxy data from the continental and marine records reveal differences in the seasonal character of climate during successive interstadials, and provide a step towards determining the underlying mechanisms of the centennial-millennial-scale variability.
Resumo:
The first anhydrite reported from oceanic basalts occurs in altered basalts drilled during DSDP Leg 70 from Hole 504B. Anhydrite has been identified in several samples, two of which were studied in detail. Anhydrite in Sample 504B-40-3 (130-135 cm), which was acquired at 310 meters sub-basement, occurs in a dolerite at the center of a vug rimmed by saponite and calcite. Red iron-hydroxide-rich alteration halos occur from 0 to 310 meters sub-basement; primary sulfides in these halos are oxidized, and the rocks have lost large amounts of sulfur. The anhydrite in this sample has a d34S value of 18.5 per mil, and it is interpreted to have formed from a fluid containing a mixture of seawater sulfate (20.9 per mil) and basaltic sulfur (0 per mil) released during the oxidation of primary sulfides. Anhydrite in Sample 504B-48-3 (14-18 cm), which was found at 376 meters sub-basement, occurs intergrown with gyrolite at the center of a 1-cm-wide vein that is rimmed by saponite and quartz. At sub-basement depths below 310 meters to the bottom of the Leg 70 section (562 m sub-basement), the rocks exhibit the effects of anoxic alteration with common secondary pyrite. Anhydrite in Sample 504B-48-3 (14-18 cm) has a d34S value of 36.7 per mil, and it is interpreted to have formed from seawater-derived fluids enriched in 34S through sulfate reduction. Temperatures of alteration calculated from oxygen isotope data range from 60 to 100°C. Sulfate reduction may have occurred in situ, or elsewhere at higher temperature, possibly deeper in the crust. The secondary mineral paragenetic sequence indicates a progressive decrease in Mg and increase in Ca in the circulating fluids. This eventually led to anhydrite formation late in the alteration process.
Resumo:
Barrow, the northernmost point in Alaska, is one of the most intensively studied areas in the Arctic. However, paleoenvironmental evidence is limited for northern Alaska for the Lateglacial-Holocene transition. For a regional paleoenvironmental reconstruction, we investigated a permafrost ice-wedge tunnel near Barrow, Alaska. The studied site was first excavated in the early 1960s and intercepts a buried ice-wedge system at 3-6 m depth below the surface. A multi-methodological approach was applied to this buried ice-wedge system and the enclosing sediments, which in their combination, give new insight into the Late Quaternary environmental and climate history. Results of geochronological, sedimentological, cryolithological, paleoecological, isotope geochemical and microbiological studies reflect different stages of mid to late Wisconsin (MW to LW), Allerod (AD), Younger Dryas (YD), Preboreal (PB), and Late Holocene paleoenvironmental evolution. The LW age of the site is indicated by AMS dates in the surrounding sediments of 21.7 kyr BP at the lateral contact of the ice-wedge system as well as 39.5 kyr BP below the ice-wedge system. It is only recently that in this region, stable isotope techniques have been employed, i.e. to characterize different types of ground ice. The stable isotope record (oxygen: d18O; hydrogen: dD) of two intersecting ice wedges suggests different phases of the northern Alaskan climate history from AD to PB, with radiocarbon dates from 12.4 to 9.9 kyr BP (ranging from 14.8 to 10.6 kyr cal BP). Stable isotope geochemistry of ice wedges reveals winter temperature variations of the Lateglacial-Holocene transition including a prominent YD cold period, clearly separated from the warmer AD and PB phases. YD is only weakly developed in summer temperature indicators (such as pollen) for the northern Alaska area, and by consequence, the YD cold stadial was here especially related to the winter season. This highlights that the combination of winter and summer indicators comprehensively describes the seasonality of climate-relevant processes in discrete time intervals. The stable isotope record for the Barrow buried ice-wedge system documents for the first time winter climate change at the Lateglacial-Holocene transition continuously and at relatively high (likely centennial) resolution.