917 resultados para Petroleum in submerged lands
Resumo:
There is a large interest in biofuels in India as a substitute to petroleum-based fuels, with a purpose of enhancing energy security and promoting rural development. India has announced an ambitious target of substituting 20% of fossil fuel consumption by biodiesel and bioethanol by 2017. India has announced a national biofuel policy and launched a large program to promote biofuel production, particularly on wastelands: its implications need to be studied intensively considering the fact that India is a large developing country with high population density and large rural population depending upon land for their livelihood. Another factor is that Indian economy is experiencing high growth rate, which may lead to enhanced demand for food, livestock products, timber, paper, etc., with implications for land use. Studies have shown that area under agriculture and forest has nearly stabilized over the past 2-3 decades. This paper presents an assessment of the implications of projected large-scale biofuel production on land available for food production, water, biodiversity, rural development and GHG emissions. The assessment will be largely focused on first generation biofuel crops, since the Indian program is currently dominated by these crops. Technological and policy options required for promoting sustainable biofuel production will be discussed. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Solid oxide galvanic cells using CaO-ZrO2 and CaO-ZrO2 in combination with YO1.5-ThO2 as electrolyte were used to determine the free energy of formation of hercynite from 750–1600°C. The formation reaction is 2Fe(s,1) + O2(g) + Al2O3(α) = 2FeO.Al2O3(s)for which ΔG° = − 139,790 + 32.83T (±300) cals. (750–1536°C) ΔG° = − 146,390 + 36.48T (±300) cals. (1536–1700°C)These measurements can be used to resolve the discrepancies that exist in published thermochemical data, and provide an accurate oxygen potential standard for calibrating and assessing the performance of oxygen probes under steelmaking conditions.
Resumo:
The magnitude and volume of transportation of petroleum products (both crude and finished products) has necessitated constructing dedicated pipelines from the refineries to the various consumer centers. The present status and scenario of pipeline transportation has been briefly described. Published literatures covering geotechnical engineering aspects, especially corrosion studies for pipelines are scanty. Available literature has been summarized. Main topic includes soil resistivity survey, classification based on resistivity and various parameters of chemical analysis. Detailed analysis has been carried out from the data generated through field investigation and laboratory tests on soil samples obtained from different locations along the two selected pipeline route where they are to be constructed. Typical data has been analysed for aggressivity. Summary of aggressivity analysis has been presented for the two field cases and modification has been suggested for existing practice.
Resumo:
Agroforestry has a potential for sequestering as much carbon if not more than forests. Massive benefits can be channeled to small farmers and landless labourers through cultivation of Tamarind and other fast growing and fruit yielding trees. This paper describes a project started by small farmers and landless labourers in a semiarid areas of south India. The aim is to upgrade dryland holdings of the member families through economically sound dry land horticulture, community woodlots, and planting of fast growing species along orchard and field boundaries. The small farmers invest massive labour inputs and project gives economic benefits to change their land use practices and improve environmental quality. This paper describes the planning. processes of the project, hurdles in finding AIJ partners, current monitoring procedures and costs of C sequestration. This shows this project is economically viable on its own, but initially needed, and continues to need Carbon credit investment in order to spread rapidly across the geopolitical region covered by the organization. It argues that economic gains to small farmers and landless labourers are the most certain way of achieving massive biomass increase and soil carbon replenishment, and that multiple holistic benefits are achieved through this kind of project.
Resumo:
Energy and energy services are the backbone of growth and development in India and is increasingly dependent upon the use of fossil based fuels that lead to greenhouse gases (GHG) emissions and related concerns. Algal biofuels are being evolved as carbon (C)-neutral alternative biofuels. Algae are photosynthetic microorganisms that convert sunlight, water and carbon dioxide (CO2) to various sugars and lipids Tri-Acyl-Glycols (TAG) and show promise as an alternative, renewable and green fuel source for India. Compared to land based oilseed crops algae have potentially higher yields (5-12 g/m(2)/d) and can use locations and water resources not suited for agriculture. Within India, there is little additional land area for algal cultivation and therefore needs to be carried out in places that are already used for agriculture, e.g. flooded paddy lands (20 Mha) with village level technologies and on saline wastelands (3 Mha). Cultivating algae under such conditions requires novel multi-tier, multi-cyclic approaches of sharing land area without causing threats to food and water security as well as demand for additional fertilizer resources by adopting multi-tier cropping (algae-paddy) in decentralized open pond systems. A large part of the algal biofuel production is possible in flooded paddy crop land before the crop reaches dense canopies, in wastewaters (40 billion litres per day), in salt affected lands and in nutrient/diversity impoverished shallow coastline fishery. Mitigation will be achieved through avoidance of GHG, C-capture options and substitution of fossil fuels. Estimates made in this paper suggest that nearly half of the current transportation petro-fuels could be produced at such locations without disruption of food security, water security or overall sustainability. This shift can also provide significant mitigation avenues. The major adaptation needs are related to socio-technical acceptance for reuse of various wastelands, wastewaters and waste-derived energy and by-products through policy and attitude change efforts.
Resumo:
This paper deals with the study of a submerged jet for the suction of unwanted fluid. This submerged jet is caused by the fluid coming out from a source. The presence of a sink in front of this source facilitates the suction of the fluid depending upon the source and sink flow rates, the axial and lateral separations of the source and sink, and the angle between the axes of the source and sink. The main purpose is the determination of the sink flow rate for 100% removal of the source fluid as a function of these parameters. The experiments have been carried using a source nozzle 6 mm in diameter and two sizes for the sink pipe diameter: 10 mm and 20 mm. The main diagnostics used are flow visualization using dye and particle image velocimetry (PIV). The dependence of the required suction flow rate to obtain 100% effectiveness on the suction tube diameter and angle is relatively weak compared to the lateral separation. DOI: 10.1115/1.4007266]
Resumo:
Polyaniline/titaniurn dioxide nanocomposites were prepared using alpha-dextrose as surfactant and ammonium persulphate as an oxidant. The PANI/TiO2 nanocomposite is characterized by FTIR, XRD and TEM. The FTIR spectra revel that the presence of characteristic peaks of benzenoid, qunoide rings and metal-oxygen stretching. The XRD studies show the monoclinic structure of the nanocomposites. The TEM study shows that the size of TiO2 is in the order of 9 nm where as the composite size is of the order of 13 nm and further it was observed that the TiO2 particles are intercalated to form a core shell of PANI. The maximum sensing response for LPG is found to be 90% for 30 wt.% of PANI/TiO2 nanocomposites at 400 ppm whereas for Benzene and Toluene it is negligibly small (<= 20%) and for the cyclohexane sensing response it is around 30% for different wt.%.
Resumo:
Slow flow in granular materials is characterized by high solid fraction and sustained inter-particle interaction. The kinematics of trawling or cutting is encountered in processes such as locomotion of organisms in sand; trawl gear movement on a soil deposit; plow movement; movement of rovers, earth moving equipment etc. Additionally, this configuration is very akin to shallow drilling configuration encountered in the mining and petroleum industries. An experimental study has been made in order to understand velocity and deformation fields in cutting of a model rounded sand. Under nominal plane strain conditions, sand is subjected to orthogonal cutting at different tool-rake angles. High-resolution optical images of the region of cutting were obtained during the flow of the granular ensemble around the tool. Interesting kinematics underlying the formation of a chip and the evolution of the deformation field is seen in these experiments. These images are also analyzed using a PIV algorithm and detailed information of the deformation parameters such as velocity, strain rate and volume change is obtained.
Resumo:
Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.
Resumo:
In several chemical and space industries, small bubbles are desired for efficient interaction between the liquid and gas phases. In the present study, we show that non-uniform electric field with appropriate electrode configurations can reduce the volume of the bubbles forming at submerged needles by up to three orders of magnitude. We show that localized high electric stresses at the base of the bubbles result in slipping of the contact line on the inner surface of the needle and subsequent bubble formation occurs with contact line inside the needle. We also show that for bubble formation in the presence of highly non-uniform electric field, due to high detachment frequency, the bubbles go through multiple coalescences and thus increase the apparent volume of the detached bubbles. (C) 2013 AIP Publishing LLC.
Resumo:
Recent reports suggest the existence of a subpopulation of stem-like cancer cells, termed as cancer stem cells (CSCs), which bear functional and phenotypic resemblance with the adult, tissue-resident stem cells. Side population (SP) assay based on differential efflux of Hoechst 33342 has been effectively used for the isolation of CSCs. The drug resistance properties of SP cells are typically due to the increased expression of ABC transporters leading to drug efflux. Conventionally used chemotherapeutic drugs may often leads to an enrichment of SP, revealing their inability to target the drug-resistant SP and CSCs. Thus, identification of agents that can reduce the SP phenotype is currently in vogue in cancer therapeutics. Withania somnifera (WS) and Tinospora cordifolia (TC) have been used in Ayurveda for treating various diseases, including cancer. In the current study, we have investigated the effects of ethanolic (ET) extracts of WS and TC on the cancer SP phenotype. Interestingly, we found significant decrease in SP on treatment with TC-ET, but not with WS-ET. The SP-inhibitory TC-ET was further fractionated into petroleum ether (TC-PET), dichloromethane (TC-DCM), and n-butyl alcohol (TC-nBT) fractions using bioactivity-guided fractionation. Our data revealed that TC-PET and TC-DCM, but not TC-nBT, significantly inhibited SP in a dose-dependent manner. Furthermore, flow cytometry-based functional assays revealed that TC-PET and TC-DCM significantly inhibited ABC-B1 and ABC-G2 transporters and sensitized cancer cells toward chemotherapeutic drug-mediated cytotoxicity. Thus, the TC-PET and TC-DCM may harbor phytochemicals with the potential to reverse the drug-resistant phenotype, thus improving the efficacy of cancer chemotherapy.
Resumo:
Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
In this second of the two-part study, the results of the Tank-to-Wheels study reported in the first part are combined with Well-to-Tank results in this paper to provide a comprehensive Well-to-Wheels energy consumption and greenhouse gas emissions evaluation of automotive fuels in India. The results indicate that liquid fuels derived from petroleum have Well-to-Tank efficiencies in the range of 75-85% with liquefied petroleum gas being the most efficient fuel in the Well-to-Tank stage with 85% efficiency. Electricity has the lowest efficiency of 20% which is mainly attributed due to its dependence on coal and 25.4% losses during transmission and distribution. The complete Well-to-Wheels results show diesel vehicles to be the most efficient among all configurations, specifically the diesel-powered split hybrid electric vehicle. Hydrogen engine configurations are the least efficient due to low efficiency of production of hydrogen from natural gas. Hybridizing electric vehicles reduces the Well-to-Wheels greenhouse gas emissions substantially with split hybrid configuration being the most efficient. Electric vehicles do not offer any significant improvement over gasoline-powered configurations; however a shift towards renewable sources for power generation and reduction in losses during transmission and distribution can make it a feasible option in the future. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
The ability to quantify leakage flow and windage heating for labyrinth seals with honeycomb lands is critical in understanding gas turbine engine system performance and predicting its component life. Variety of labyrinth seal configurations (number of teeth, stepped or straight, honeycomb cell size) are in use in gas turbines, and for each configuration, there are many geometric factors that can impact a seal's leakage and windage characteristics. This paper describes the development of a numerical methodology aimed at studying the effect of honeycomb lands on leakage and windage heating. Specifically, a three-dimensional computational fluid dynamics (CFD) model is developed utilizing commercial finite volume-based software incorporating the renormalization group (RNG) k-epsilon turbulence model with modified Schmidt number. The modified turbulence model is benchmarked and fine-tuned based on several experiments. Using this model, a broad parametric study is conducted by varying honeycomb cell size, pressure ratio (PR), and radial clearance for a four-tooth straight-through labyrinth seal. The results show good agreement with available experimental data. They further indicate that larger honeycomb cells predict higher seal leakage and windage heating at tighter clearances compared to smaller honeycomb cells and smooth lands. However, at open seal clearances larger honeycomb cells have lower leakage compared to smaller honeycomb cells.