905 resultados para Peptide fractions
Resumo:
Since megakaryocytes are the cellular precursors of platelets we have investigated whether they share responses to platelet agonists, in particular collagen. Although previous studies have reported responses to thrombin in non-human megakaryocytes, through studies of single cell calcium responses and protein tyrosine-phosphorylation we demonstrate for the first time that both isolated human megakaryocytes and CD41/61-positive megakaryocytes derived in culture from CD34+ cells share responses to the platelet agonists collagen, collagen-related peptide and thrombin. The responses to either collagen or CRP were seen only in the most mature megakaryocytes and not in megakaryocyte-like cell lines, suggesting that the response to collagen is a characteristic developed late during megakaryocyte differentiation. These primary cells offer the opportunity to use many molecular and cellular techniques to study and manipulate signalling events in response to platelet receptor agonists, which cannot be performed in the small, anucleate platelet itself.
Resumo:
Activation of platelets by collagen is mediated through a tyrosine kinase-dependent pathway that is associated with phosphorylation of the Fc receptor gamma chain, the tyrosine kinase syk, and phospholipase C gamma2 (PLC gamma2). We recently described a collagen-related triple-helical peptide (CRP) with the sequence GCP*(GPP*)GCP*G (single letter amino acid code: P* = hydroxyproline; Morton et al, Biochem J306:337, 1995). The cross-linked peptide is a potent stimulus of platelet activation but, unlike collagen, does not support alpha2beta1-mediated, Mg2+-dependent adhesion, suggesting that its action is independent of the integrin alpha2beta1. This finding suggests the existence of a platelet receptor other than alpha2beta1 that underlies activation. In the present study, we show that CRP stimulates tyrosine phosphorylation of the same pattern of proteins in platelets as collagen, including syk and PLC gamma2. Protein tyrosine phosphorylation induced by CRP is not altered in the absence of Mg2+ or the presence of monoclonal antibodies (MoAbs) to the integrin alpha2beta1 (MoAb 6F1 and MoAb 13), conditions that prevent the interaction of collagen with the integrin. In contrast, phosphorylation of syk and PLC gamma2 by collagen is partially reduced by MoAb 6F1 and MoAb 13 or by removal of Mg2+. This may reflect a direct role of alpha2beta1 in collagen-induced signaling events or an indirect role in which the integrin facilitates the binding of collagen to its signaling receptor. The results show an alpha2beta1-independent pathway of platelet activation by CRP that involves phosphorylation of syk and PLC gamma2. This pathway appears to contribute to platelet activation by collagen.
Resumo:
A strategy is presented that exploits the ability of synthetic polymers of different nature to disturb the strong selfassembly capabilities of amyloid based β-sheet forming peptides. Following a convergent approach, the peptides of interest were synthesized via solid-phase peptide synthesis (SPPS) and the polymers via reversible addition−fragmentation chain transfer (RAFT) polymerization, followed by a copper(I) catalyzed azide− alkyne cycloaddition (CuAAC) to generate the desired peptide− polymer conjugates. This study focuses on a modified version of the core sequence of the β-amyloid peptide (Aβ), Aβ(16−20) (KLVFF). The influence of attaching short poly(Nisopropylacrylamide) and poly(hydroxyethylacrylate) to the peptide sequences on the self-assembly properties of the hybrid materials were studied via infrared spectroscopy, TEM, circular dichroism and SAXS. The findings indicate that attaching these polymers disturbs the strong self-assembly properties of the biomolecules to a certain degree and permits to influence the aggregation of the peptides based on their β-sheets forming abilities. This study presents an innovative route toward targeted and controlled assembly of amyloid-like fibers to drive the formation of polymeric nanomaterials.
Resumo:
We report on the formation of hydrogel monoliths formed by functionalized peptide Fmoc-RGD (Fmoc: fluorenylmethoxycarbonyl) containing the RGD cell adhesion tripeptide motif. The monolith is stable in water for nearly 40 days. The gel monoliths present a rigid porous structure consisting of a network of peptide fibers. The RGD-decorated peptide fibers have a β-sheet secondary structure. We prove that Fmoc-RGD monoliths can be used to release and encapsulate material, including model hydrophilic dyes and drug compounds. We provide the first insight into the correlation between the absorption and release kinetics of this new material and show that both processes take place over similar time scales.
Resumo:
Studying peptide amphiphiles (PAs), we investigate the influence of alkyl chain length on the aggregation behavior of the collagen-derived peptide KTTKS with applications ranging from antiwrinkle cosmetic creams to potential uses in regenerative medicine. We have studied synthetic peptides amphiphiles C14− KTTKS (myristoyl Lys-Thr-Thr-Lys-Ser) and C18−KTTKS(stearoyl-Lys-Thr Thr-Lys-Ser) to investigate in detail their physicochemical properties. It is presumed that the hydrophobic chain in these self-assembling peptide amphiphiles enhances peptide permeation across the skin compared to KTTKS alone. Subsequently Cn−KTTKS should act as a prodrug and release the peptide by enzymatic cleavage. Our results should be useful in the further development of molecules with collagen-stimulating activity.
Resumo:
The contribution from agricultural catchments to stream nitrogen and phosphorus concentrations was assessed by evaluation of the chemical composition of these nutrients in agricultural runoff for both surface and subsurface flow pathways. A range of land uses (grazed and ungrazed grassland, cereals, roots) in intensive agricultural systems was studied at scales from hillslope plots (0.5m2) to large catchment (>300km2). By fractionating the total nutrient load it was possible to establish that most of the phosphorus was transported in the unreactive (particulate and organic) fraction via surface runoff. This was true regardless of the scale of measurement. The form of the nitrogen load varied with land use and grazing intensity. High loads of dissolved inorganic nitrogen (with >90% transported as NH4-N) were recorded in surface runoff from heavily grazed land. In subsurface flow from small (2km2) subcatchments and in larger (>300 km2) catchments, organic nitrogen was found to be an important secondary constituent of the total nitrogen load, comprising 40% of the total annual load.
Resumo:
With the aim of investigating the potential of flavan-3-ols to influence the growth of intestinal bacterial groups, we have carried out the in vitro fermentation, with human faecal microbiota, of two purified fractions from grape seed extract (GSE): GSE-M (70% monomers and 28% procyanidins) and GSE-O (21% monomers and 78 % procyanidins). Samples were collected at 0, 5, 10, 24, 30 and 48 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and for analysis of phenolic metabolites. Both GSE-M and GSE-O fractions promoted growth of Lactobacillus/Enterococcus and decrease in the Clostridium histolyticum group during fermentation, although the effects were only statistically significant with GSE-M for Lactobacillus/Enterococcus (at 5 and 10 h of fermentation) and GSE-O for C. histolyticum (at 10 h of fermentation). Main changes in polyphenol catabolism also occurred during the first 10 h of fermentation, however no significant correlation coefficients (P>0.05) were found between changes in microbial populations and precursor flavan-3-ols or microbial metabolites. Together these data suggest that the flavan-3-ol profile of a particular food source could affect the microbiota composition and its catabolic activity, inducing changes that could in turn affect the bioavailability and potential bioactivity of these compounds.
Resumo:
A novel combination of site-specific isotope labelling, polarised infrared spectroscopy and molecular combing reveal local orientational ordering in the fibril-forming peptide YTIAALLSPYSGGRADS. Use of 13C-18O labelled alanine residues demonstrates that the Nterminal end of the peptide is incorporated into the cross-beta structure, while the C-terminal end shows orientational disorder
Resumo:
In biological mass spectrometry (MS), two ionization techniques are predominantly employed for the analysis of larger biomolecules, such as polypeptides. These are nano-electrospray ionization [1, 2] (nanoESI) and matrix-assisted laser desorption/ionization [3, 4] (MALDI). Both techniques are considered to be “soft”, allowing the desorption and ionization of intact molecular analyte species and thus their successful mass-spectrometric analysis. One of the main differences between these two ionization techniques lies in their ability to produce multiply charged ions. MALDI typically generates singly charged peptide ions whereas nanoESI easily provides multiply charged ions, even for peptides as low as 1000 Da in mass. The production of highly charged ions is desirable as this allows the use of mass analyzers, such as ion traps (including orbitraps) and hybrid quadrupole instruments, which typically offer only a limited m/z range (< 2000–4000). It also enables more informative fragmentation spectra using techniques such as collisioninduced dissociation (CID) and electron capture/transfer dissociation (ECD/ETD) in combination with tandem MS (MS/MS). [5, 6] Thus, there is a clear advantage of using ESI in research areas where peptide sequencing, or in general, the structural elucidation of biomolecules by MS/MS is required. Nonetheless, MALDI with its higher tolerance to contaminants and additives, ease-of-operation, potential for highspeed and automated sample preparation and analysis as well as its MS imaging capabilities makes it an ionization technique that can cover bioanalytical areas for which ESI is less suitable. [7, 8] If these strengths could be combined with the analytical power of multiply charged ions, new instrumental configurations and large-scale proteomic analyses based on MALDI MS(/MS) would become feasible.
Resumo:
The surfactant-like peptide (Ala)6(Arg) is found to self-assemble into 3 nm-thick sheets in aqueous solution. Scanning transmission electron microscopy measurements of mass per unit area indicate a layer structure based on antiparallel dimers. At higher concentration the sheets wrap into unprecedented ultrathin helical ribbon and nanotube architectures.
Resumo:
Insulin-like peptide 3 (INSL3), a major product of testicular Leydig cells, is also expressed by the ovary but its functional role remains poorly understood. Here, we quantified expression of INSL3 and its receptor RXFP2 in theca interna (TIC) and granulosa (GC) compartments of developing bovine antral follicles and in corpora lutea (CL). INSL3 and RXFP2 mRNA levels were much higher in TIC than GC and increased progressively during follicle maturation with INSL3 peaking in large (11-18mm) estrogen-active follicles and RXFP2 peaking in 9-10mm follicles before declining in larger (11-18mm) follicles. Expression of both INSL3 and RXFP2 in CL was much lower than in TIC. In situ hybridization and immunohistochemistry confirmed abundant expression of INSL3 mRNA and protein in TIC. These observations indicate follicular TIC rather than CL as the primary site of both INSL3 production and action, implying a predominantly auto-/paracrine role in TIC. To corroborate the above findings, we showed that in vitro exposure of TIC to a luteinizing concentration of LH greatly attenuated expression of both INSL3 and its receptor while increasing progesterone secretion and expression of STAR and CYP11A1. Moreover, in vivo, a significant cyclic variation in plasma INSL3 was observed during synchronized estrous cycles. INSL3 and estradiol-17β followed a similar pattern, both increasing after luteolysis, before falling sharply after the LH surge. Thus, theca-derived INSL3, likely from the dominant pre-ovulatory follicle, is detectable in peripheral blood of cattle and expression is down-regulated during luteinisation induced by the pre-ovulatory LH surge. Collectively, these findings underscore the likely role of INSL3 as an important intrafollicular modulator of TIC function/steroidogenesis, whilst raising doubts about its potential contribution to CL function.
Resumo:
Bone morphogenetic proteins (BMP) are firmly implicated as intra-ovarian regulators of follicle development and steroidogenesis. Here we report a microarray analysis showing that treatment of cultured bovine theca cells (TC) with BMP6 significantly (>2-fold; P<0.01) up- or down-regulated expression of 445 genes. Insulin-like peptide 3 (INSL3) was the most heavily down-regulated gene (-43-fold) with CYP17A1 and other key transcripts involved in TC steroidogenesis including LHCGR, INHA, STAR, CYP11A1 and HSD3B1 also down-regulated. BMP6 also reduced expression of NR5A1 encoding steroidogenic factor-1 known to target the promoter regions of the aforementioned genes. Real-time PCR confirmed these findings and also revealed a marked reduction in expression of INSL3 receptor (RXFP2). Secretion of INSL3 protein and androstenedione were also suppressed suggesting a functional link between BMP and INSL3 pathways in controlling androgen synthesis. RNAi-mediated knockdown of INSL3 reduced INSL3 mRNA and secreted protein level (75 and 94%, respectively) and elicited a 77% reduction in CYP17A1 mRNA level and 83% reduction in androstenedione secretion. Knockdown of RXFP2 also reduced CYP17A1 mRNA level (81%) and androstenedione secretion (88%). Conversely, treatment with exogenous (human) INSL3 increased androstenedione secretion ~2-fold. The CYP17 inhibitor abiraterone abolished androgen secretion and reduced expression of both INSL3 and RXFP2. Collectively, these findings indicate a positive autoregulatory role for INSL3 signaling in maintaining thecal androgen production, and visa versa. Moreover, BMP6-induced suppression of thecal androgen synthesis may be mediated, at least in part, by reduced INSL3-RXFP2 signaling.
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16–KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16–KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.
Resumo:
The collagen production of human dermal and corneal fibroblasts in contact with solutions of the peptide amphiphile (PA) C16−KTTKS is investigated and related to its self-assembly into nanotape structures. This PA is used in antiwrinkle cosmeceutical applications (trade name Matrixyl). We prove that C16−KTTKS stimulates collagen production in a concentration-dependent manner close to the critical aggregation concentration determined from pyrene fluorescence spectroscopy. This suggests that self-assembly and the stimulation of collagen production are inter-related.