992 resultados para Optically pumped lasers
Resumo:
The current study describes the morphologic macular features in two eyes that developed full-thickness macular holes in the setting of documented vitreofoveal separation. Using third-generation optical coherence tomography, complete vitreofoveal separation associated with the disruption of the inner foveal retina was documented in both cases. Five months after presentation, decreased vision and epiretinal membrane formation associated with development of a full-thickness macular hole were observed in the first patient. In the second patient, a full-thickness macular hole was demonstrated by optical coherence tomography 6 weeks after presentation. These findings suggest that full-thickness macular holes may develop in eyes with vitreofoveal separation. Evidence of the disturbance of the inner foveal architecture on optical coherence tomography indicates the potential role of factors other than anteroposterior or oblique vitreoretinal tractional forces in the genesis of some full-thickness macular holes.
Resumo:
The purpose of this in vitro study was to compare the bond strength between fiber post and laser-treated root canals. Forty single-rooted bovine teeth were endodontically treated and randomly divided into four groups of equal size according to the root canal treatment: group 1 conventional treatment (without laser irradiation); group 2 Nd:YAG laser (1.5 W, 10 Hz, 100 mJ); group 3 Er,Cr:YSGG laser (0.75 W, 20 Hz); and group 4 Nd:YAG + Er,Cr:YSGG lasers. The fiber posts were cemented with an adhesive system + resin cement, in accordance with the manufacturer`s instructions. A mini acrylic pipe was fixed on the coronal section of the post using a light-polymerized resin. Specimens were mounted on an acrylic pipe with a self-polymerized resin. Retention forces were determined using a universal testing machine (0.5 mm/min). Data were analyzed using one-way ANOVA and Tukey tests (p < 0.05). The post retention force in group 2 was found to be lower than that in the other experimental groups. Fractures were observed at the interface between the dentin and the resin in all groups. High-intensity lasers can be used in conventional endodontic treatment; however, root canal surface irradiation using the Nd:YAG laser was shown to negatively affect the post retention force.
Resumo:
The objective of this study was to evaluate in vitro light activation of the nano-filled resin composite Vita shade A1 and A3 with a halogen lamp (QTH) and argon ion laser by Knoop microhardness profile. Materials and methods: Specimens of nanofilled composite resin (Z350-3 M-ESPE) Vita shade A1 and A3 were prepared with a single increment inserted in 2.0-mm-thick and 3-mm diameter disc-shaped Teflon mold. The light activation was performed with QTH for 20 s (with an intensity of approximately 1,000 mW/cm(2) and 700 mW/cm(2)) and argon ion laser for 10 s (with a power of 150 mW and 200 mW). Knoop microhardness test was performed after 24 h and 6 months. The specimens were divided into the 16 experimental groups (n = 10), according to the factors under study: photoactivation form, resin shade, and storage time. Knoop microhardness data was analyzed by a factorial ANOVA and TukeyA ` s tests at the 0.05 level of significance. Results: Argon ion laser was not able to photo-activate the darker shade of the nanofilled resin composite evaluated but when used with 200 mW it can be as effective as QTH to photo-activate the lighter shade with only 50% of the time exposure. After 6 months storage, an increase in the means of Knoop microhardness values were observed. Conclusions: Light-activation significantly influenced the Knoop microhardness values for the darker nanofilled resin composite.
Resumo:
The objective of this study was to evaluate the influence of various pulse widths with different energy parameters of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) on the morphology and microleakage of cavities restored with composite resin. Identically sized class V cavities were prepared on the buccal surfaces of 54 bovine teeth by high-speed drill (n = 6, control, group 1) and prepared by Er:YAG laser (Fidelis 320A, Fotona, Slovenia) with irradiation parameters of 350 mJ/ 4 Hz or 400 mJ/2 Hz and pulse width: group 2, very short pulse (VSP); group 3, short pulse (SP); group 4, long pulse (LP); group 5, very long pulse (VLP). All cavities were filled with composite resin (Z-250-3 M), stored at 37A degrees C in distilled water, polished after 24 h, and thermally stressed (700 cycles/5-55A degrees C). The teeth were impermeabilized, immersed in 50% silver nitrate solution for 8 h, sectioned longitudinally, and exposed to Photoflood light for 10 min to reveal the stain. The leakage was evaluated under stereomicroscope by three different examiners, in a double-blind fashion, and scored (0-3). The results were analyzed by Kruskal-Wallis test (P > 0.05) and showed that there was no significant differences between the groups tested. Under scanning electron microscopy (SEM) the morphology of the cavities prepared by laser showed irregular enamel margins and dentin internal walls, and a more conservative pattern than that of conventional cavities. The different power settings and pulse widths of Er:YAG laser in cavity preparation had no influence on microleakage of composite resin restorations.
Resumo:
Background and Objectives: This study evaluated the hybrid layer (HL) morphology created by three adhesive systems (AS) on dentin surfaces treated with Er:YAG laser using two irradiation parameters. Study Design: Occlusal flat dentin surfaces of 36 human third molars were assigned into nine groups (n = 4) according to the following ASs: one bottle etch&rinse Single Bond Plus (3M ESPE), two-step Clearfil Protect Bond (Kuraray), and all-in-one S3 Bond (Kuraray) self-etching, which were labeled with rhodamine B or fluorescein isothiocyanate dextran and were applied to dentin surfaces that were irradiated with Er:YAG laser at either 120 (38.7 J/cm(2)) or 200 mJ/pulse (64.5 J/cm(2)), or were applied to untreated dentin surfaces (control group). The ASs were light-activated following MI and the bonded surfaces were restored with resin composite Z250 (3M ESPE). After 24 hours of storage in vegetable oil, the restored teeth were vertically, serially sectioned into 1-mm thick slabs, which had the adhesive interfaces analyzed with confocal laser microscope (CLSM-LSM 510 Meta). CLSM images were recorded in the fluorescent mode from three different regions along each bonded interface. Results: Non-uniform HL was created on laser-irradiated dentin surfaces regardless of laser irradiation protocol for all AS, while regular and uniform HL was observed in the control groups. ""Stretch mark""-like red lines were found within the HL as a result of resin infiltration into dentin microfissures, which were predominantly observed in 200 mJ/pulse groups regardless of AS. Poor resin infiltration into peritubular dentin was observed in most regions of adhesive interfaces created by all ASs on laser-irradiated dentin, resulting in thin resin tags with neither funnel-shaped morphology nor lateral resin projections. Conclusion: Laser irradiation of dentin surfaces at 120 or 200 mJ/pulse resulted in morphological changes in HL and resin tags for all ASs evaluated in the study. Lasers Surg. Med. 42:662-670, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The purpose of this study was to evaluate the effect of erbium:yttrium-aluminum-garnet (Er:YAG) laser (2.94 mu m) irradiation on the removal of root surface smear layer of extracted human teeth and to compare its efficacy with that of citric acid, ethylenediamine tetra-acetic acid (EDTA), or a gel containing a mixture of tetracycline hydrochloride (HCl) and citric acid, using scanning electron microscopy (SEM). Thirty human dentin specimens were randomly divided into six groups: G1 (control group), irrigated with 10 ml of physiologic saline solution; G2, conditioned with 24% citric acid gel; G3, conditioned with 24% EDTA gel; G4, conditioned with a 50% citric acid and tetracycline gel; G5, irradiated with Er:YAG laser (47 mJ/10 Hz/5.8 J/cm(2)/pulse); G6, irradiated with Er:YAG laser (83 mJ/10 Hz/10.3 J/cm(2)/pulse). Electron micrographs were obtained and analyzed according to a rating system. Statistical analysis was conducted with Kruskal-Wallis and Mann-Whitney tests (P < 0.05). G1 was statistically different from all the other groups; no statistically significant differences were observed between the Er:YAG laser groups and those undergoing the other treatment modalities. When the two Er:YAG laser groups were compared, the fluency of G6 was statistically more effective in smear layer removal than the one used in G5 (Mann-Whitney test, P < 0.01). Root surfaces irradiated by Er:YAG laser had more irregular contours than those treated by chemical agents. It can be concluded that all treatment modalities were effective in smear layer removal. The results of our study suggest that the Er:YAG laser can be safely used to condition diseased root surfaces effectively. Furthermore, the effect of Er:YAG laser irradiation on root surfaces should be evaluated in vivo so that its potential to enhance the healing of periodontal tissues can be assessed.
Resumo:
The aim of this in vitro study was to evaluate some parameters of dental etching when irradiated with an erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser. One-hundred sound human third molars were selected and randomly distributed into ten groups (n = 10). The class V cavities of group 1 (control) were prepared with a bur and etched with 37% phosphoric acid, while groups G2 to G10, were prepared with laser (5 W, 88.46 J/cm(2), 90/70% air/water) and etched with the following powers: G3 and G4, 0.25 W; G5 and G6, 0.5 W; G7 and G8, 0.75 W; G9 and G10, 1 W. Group G2 received no laser etching. Prior to restoration, G2, G4, G6, G8 and G10 received acid etching. After restoration, all samples were submitted to a microleakage test. According to statistical analysis (Kruskal-Wallis and Dunn`s tests), G10 presented the lowest microleakage values (P < 0.05). The other groups showed no differences between them. Etching with Er,Cr:YSGG laser (1 W) followed by phosphoric acid was effective in reducing the microleakage of class V restorations.
Resumo:
The aim of this study was to evaluate the influence of erbium:yttrium-aluminum-garnet (Er:YAG) laser compared with traditional treatment on dentin permeability to calcitonin and sodium alendronate. Forty bovine roots were sectioned and divided into eight groups. Groups 1 and 2 (G1/G2) were immersed in saline solution; G1T/G2T were immersed in ethylene diamine tetra-acetic acid plus sodium lauryl ether sulfate (EDTA-T) and sodium hypochlorite (NaOCl); G1I/G2I were irradiated with Er:YAG laser (2.94 mu m, 6 Hz, 40.4 J/cm(2)); G1TI/G2TI were immersed in EDTA-T, NaOCl and subjected to Er:YAG irradiation. After 4 h the radioactivity of the saline solution was measured. Statistical analysis revealed a significant difference (P < 0.05) when the groups treated with EDTA-T and NaOCl followed by Er:YAG laser irradiation were compared with the groups treated with EDTA-T only and with the groups that received no treatment. Er:YAG laser associated with traditional procedures significantly increased the diffusion of calcitonin and sodium alendronate through dentin. All groups showed calcitonin and sodium alendronate diffusion.
Resumo:
Alternative treatment for recurrent labial infection by herpes simplex virus (HSV) have been considered. The aim of this study was to evaluate the effectiveness of laser phototherapy in prevention and reduction of severity of labial manifestations of herpes labialis virus. Seventy-one patients, divided into experimental (n = 41) and control (n = 30) groups were followed up for 16 months. Patients in the control group were treated topically with aciclovir and patients in the experimental group were subjected to laser phototherapy (one session per week, 10 weeks): 780 nm, 60 mW, 3.0 J/cm(2) or 4.5 J/cm(2) on healthy (no HSV-1 infection) and affected (with HSV-1 infection) tissues. Patients in the experimental group presented a significant decrease in dimension of herpes labialis lesions (P = 0.013) and inflammatory edema (P = 0.031). The reduction in pain level (P = 0.051) and monthly recurrences (P = 0.076) did not reach statistical significance. This study represents an in vivo indication that this treatment should be further considered as an effective alternative to therapeutic regimens for herpes labialis lesions.
Resumo:
This study evaluated the effect of different parameters of erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation on enamel mineral loss in a simulated caries model. Forty-five enamel samples obtained from third molar teeth (3 mmx 3 mm) were randomly divided into five groups (n = 9): G1-Er,Cr:YSGG laser at 0.25 W, 20 Hz, 2.8 J/cm(2); G2-Er,Cr:YSGG laser at 0.50 W, 20 Hz, 5.7 J/cm(2); G3-Er,Cr:YSGG laser at 0.75 W, 20 Hz, 8.5 J/cm(2); G4-sodium fluoride (NaF) dentifrice (positive control); G5-no treatment (negative control). After irradiation, the samples were submitted to 2 weeks of pH cycling. After the acid challenge, the samples were assessed by cross-sectional microhardness at different depths from the enamel surface. Analysis of variance (ANOVA) and Student-Newman-Keuls tests were performed (alpha = 5%). The percentage of lesion inhibition for each group was: G1 37%; G2 38%; G3 64%, and G4 50.5%. Regarding the relative mineral loss values (micrometers x volume percent), groups G1 (1,392 +/- 522) and G2 (1,292 +/- 657) did not differ significantly from each other, but both had higher values than group G3 (753 +/- 287); the groups irradiated with Er,Cr:YSGG laser did not differ from group G4. Although the findings of the study revealed that Er,Cr:YSGG laser irradiation at 8.5 J/cm(2) can be an alternative for the enhancement of the enamel`s resistance to acid, lower energy densities also produced a cariostatic potential comparable to the use of fluoride dentifrice.
Resumo:
The aim of this study was to compare the concentration of mast cells (MCs) in the healing process of incisions. Thirty rats were submitted to six linear incisions each, performed in the dorsal skin by carbon dioxide (CO(2)) and diode lasers, electrocautery and conventional scalpel. The animals were euthanized at intervals of 0 h, 24 h, 48 h, 72 h, 7 days and 14 days after the incisions had been made. Histological sections were obtained and stained with toluidine blue for identification of MCs, which were manually counted by conventional microscopy in 20 microscopic fields in the border of the incision, near the granulation tissue, or in the area of new collagen formation, depending on intervals. The concentration of MCs was significantly higher in the wounds made by scalpel than in those made by other techniques at 48 h and 72 h. After 72 h the number of MCs was also significantly higher after electrocautery than after incisions made by 4 W CO(2) laser. On days 7 and 14, there was no significant difference in the MC count among the different types of incisions. In summary, the MC concentration varied after different surgical incisions at early phases of wound healing. At the end of the healing process, however, there were similar MC concentrations around the incisions, suggesting that, in standard incisions in the surgical techniques studied, the wound healing process ultimately occurred in a similar pattern.
Resumo:
The aim of this study was to evaluate the effect of laser irradiation (LI) on enzymatic activities of amylase, catalase and peroxidase in the parotid glands (PG) of diabetic and non-diabetic rats. Ninety-six female rats were divided into eight groups: D0; D5; D10; D20 and C0; C5; C10; C20, respectively. Diabetes was induced by administration of streptozotocin and confirmed later by the glycemia results. Twenty-nine (29) days after the induction, the PGs of groups D5 and C5; D10 and C10; D20 and C20, were irradiated with 5 J/cm(2), 10 J/cm(2) and 20 J/cm(2) of laser diode (660 nm/100 mW) respectively. On the following day, the rats were euthanized and the enzymatic activity in the PGs was measured. Diabetic rats that had not been irradiated (group D0) showed higher catalase activity (P < 0.05) than those in group C0 (0.14 +/- 0.02 U/mg protein and 0.10 +/- 0.03 U/mg protein, respectively). However, laser irradiation of 5 J/cm(2) and 20 J/cm(2) decreased the catalase activity of the diabetic groups (D5 and D20) to non-diabetic values (P > 0.05). Based on the results of this study, LI decreased catalase activity in the PGs of diabetic rats.
Resumo:
The aim of this study was to evaluate the effects of infrared diode laser phototherapy (LP) on tissues of the submandibular gland (SMG) and parotid gland (PG). Wistar rats were randomly divided into experimental (A and B) and control (C) groups. A diode laser, 808 nm wavelength, in continuous wave mode, was applied to the PG, SMG and sublingual gland in the experimental groups on two consecutive days. The doses were 4 J/cm(2) and 8 J/cm(2), and total energy was 7 J and 14 J, respectively. The power output (500 mW) and power density (277 mW/cm(2)) were the same for both experimental groups. In order to visualize the area irradiated by the infrared laser, we used a red pilot beam (650 nm) with 3 mW maximum power for the experimental groups. For the control group, the red pilot beam was the only device used. The SMG and PG were removed after 1 week of the first irradiation. Total protein concentration, amylase, peroxidase, catalase and lactate dehydrogenase assays were performed, as well as histological analysis. Statistical tests revealed significant increase in the total protein concentration for groups A and B in the parotid glands (P < 0.05). Based on the results of this study, LP altered the total protein concentration in rats` parotid glands.
Resumo:
Little is known about the physiological mechanisms related to low-intensity laser therapy (LILT), particularly in acute inflammation and subsequent wound healing. The objective of this study was to verify the effect of LILT on mast cell degranulation. Epulis fissuratum tissues from eight patients were used. One part of the lesion was irradiated with an AsGaAl laser (lambda = 670 nm, 8.0 J/cm(2), 5 mW, 4 min). The other part was not irradiated. Then, the specimens were immediately removed, fixed and examined by light microscopy. The number of mast cells was similar in laser-treated samples when compared with non-irradiated specimens. The degranulation indexes of the mast cells observed in the irradiated samples were significantly higher than those of controls (P < 0.05). LILT with the parameters used increased the number of degranulated mast cells in oral mucosa.
Resumo:
The aim of this study was to investigate whether distinct cooling of low fluence erbium, chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser irradiation would influence adhesion. Main factors tested were: substrates (two), irradiation conditions (three), and adhesives (three). A 750 mu m diameter tip was used, for 50 s, 1 mm from the surface, with a 0.25 W power output, 20 Hz, energy density of 2.8 J/cm(2) with energy per pulse of 12.5 mJ. When applied, water delivery rate was 11 ml/min. The analysis of variance (ANOVA) showed that laser conditioning significantly decreased the bond strength of all adhesive systems applied on enamel. On dentin, laser conditioning significantly reduced bond strength of etch-and-rinse and one-step self-etch systems; however, laser irradiation under water cooling did not alter bonding of two-step self-etching. It may be concluded that the irradiation with Er,Cr:YSGG laser at 2.8 J/cm(2) with water coolant was responsible for a better adhesion to dentin, while enamel irradiation reduced bond strength, irrespective of cooling conditions.