901 resultados para Offshore systems modelling and control
Resumo:
microRNAs (miRNAs) are small non-coding RNAs that are frequently involved in carcinogenesis. Although many miRNAs form part of integrated networks, little information is available how they interact with each other to control cellular processes. miR-34a and miR-15a/16 are functionally related; they share common targets and control similar processes including G1-S cell cycle progression and apoptosis. The aim of this study was to investigate the combined action of miR-34a and miR-15a/16 in non-small cell lung cancer (NSCLC) cells.
Resumo:
We propose an innovative, integrated, cost-effective health system to combat major non-communicable diseases (NCDs), including cardiovascular, chronic respiratory, metabolic, rheumatologic and neurologic disorders and cancers, which together are the predominant health problem of the 21st century. This proposed holistic strategy involves comprehensive patient-centered integrated care and multi-scale, multi-modal and multi-level systems approaches to tackle NCDs as a common group of diseases. Rather than studying each disease individually, it will take into account their intertwined gene-environment, socio-economic interactions and co-morbidities that lead to individual-specific complex phenotypes. It will implement a road map for predictive, preventive, personalized and participatory (P4) medicine based on a robust and extensive knowledge management infrastructure that contains individual patient information. It will be supported by strategic partnerships involving all stakeholders, including general practitioners associated with patient-centered care. This systems medicine strategy, which will take a holistic approach to disease, is designed to allow the results to be used globally, taking into account the needs and specificities of local economies and health systems.
Resumo:
This article offers an analysis of a struggle for control of a women’s development project in Nepal. The story of this struggle is worth telling, for it is rife with the gender politics and neo-colonial context that underscore much of what goes on in contemporary Nepal. In particular, my analysis helps to unravel some of the powerful discourses, threads of interest, and yet unintended effects inevitable under a regime of development aid. The analysis demonstrates that the employment of already available discursive figures of the imperialist feminist and the patriarchal third world man are central to the rhetorical strategies taken in the conflict. I argue that the trans-discursive or “borderland” nature of development in general and women’s development in particular result in different constructions of “development” goals, means and actors based not only on divergent cultural categories but on historically specific cultural politics. I argue further that the apolitical discourse of development serves to cloak its inherently political project of social and economic transformation, making conflicts such as the one that occurred in this case not only likely to occur but also likely to be misunderstood.
Resumo:
There is increasing recognition that transdisciplinary approaches are needed to create suitable knowledge for sustainable water management. However, there is no common understanding of what transdisciplinary research may be and there is very limited debate on potentials and challenges regarding its implementation. Against this background, this paper presents a conceptual framework for transdisciplinary co-production of knowledge in water management projects oriented towards more sustainable use of water. Moreover, first experiences with its implementation are discussed. In so doing, the focus lies on potentials and challenges related to the co-production of systems, target and transformation knowledge by researchers and local stakeholders.
Resumo:
Since 1987, when bovine spongiform encephalopathy (BSE) emerged as a novel disease in cattle, enormous efforts were undertaken to monitor and control the disease in ruminants worldwide. The driving force was its high economic impact, which resulted from trade restrictions and the loss of consumer confidence in beef products, the latter because BSE turned out to be a fatal zoonosis, causing variant Creutzfeldt-Jakob disease in human beings. The ban on meat and bone meal in livestock feed and the removal of specified risk materials from the food chain were the main measures to successfully prevent infection in cattle and to protect human beings from BSE exposure. However, although BSE is now under control, previously unknown, so-called atypical transmissible spongiform encephalopathies (TSEs) in cattle and small ruminants have been identified by enhanced disease surveillance. This report briefly reviews and summarizes the current level of knowledge on the spectrum of TSEs in cattle and small ruminants and addresses the question of the extent to which such atypical TSEs have an effect on disease surveillance and control strategies.
Resumo:
INTRODUCTION: Surgical site infections (SSI) are the most common hospital-acquired infections among surgical patients, with significant impact on patient morbidity and health care costs. The Basel SSI Cohort Study was performed to evaluate risk factors and validate current preventive measures for SSI. The objective of the present article was to review the main results of this study and its implications for clinical practice and future research. SUMMARY OF METHODS OF THE BASEL SSI COHORT STUDY: The prospective observational cohort study included 6,283 consecutive general surgery procedures closely monitored for evidence of SSI up to 1 year after surgery. The dataset was analysed for the influence of various potential SSI risk factors, including timing of surgical antimicrobial prophylaxis (SAP), glove perforation, anaemia, transfusion and tutorial assistance, using multiple logistic regression analyses. In addition, post hoc analyses were performed to assess the economic burden of SSI, the efficiency of the clinical SSI surveillance system, and the spectrum of SSI-causing pathogens. REVIEW OF MAIN RESULTS OF THE BASEL SSI COHORT STUDY: The overall SSI rate was 4.7% (293/6,283). While SAP was administered in most patients between 44 and 0 minutes before surgical incision, the lowest risk of SSI was recorded when the antibiotics were administered between 74 and 30 minutes before surgery. Glove perforation in the absence of SAP increased the risk of SSI (OR 2.0; CI 1.4-2.8; p <0.001). No significant association was found for anaemia, transfusion and tutorial assistance with the risk of SSI. The mean additional hospital cost in the event of SSI was CHF 19,638 (95% CI, 8,492-30,784). The surgical staff documented only 49% of in-hospital SSI; the infection control team registered the remaining 51%. Staphylococcus aureus was the most common SSI-causing pathogen (29% of all SSI with documented microbiology). No case of an antimicrobial-resistant pathogen was identified in this series. CONCLUSIONS: The Basel SSI Cohort Study suggested that SAP should be administered between 74 and 30 minutes before surgery. Due to the observational nature of these data, corroboration is planned in a randomized controlled trial, which is supported by the Swiss National Science Foundation. Routine change of gloves or double gloving is recommended in the absence of SAP. Anaemia, transfusion and tutorial assistance do not increase the risk of SSI. The substantial economic burden of in-hospital SSI has been confirmed. SSI surveillance by the surgical staff detected only half of all in-hospital SSI, which prompted the introduction of an electronic SSI surveillance system at the University Hospital of Basel and the Cantonal Hospital of Aarau. Due to the absence of multiresistant SSI-causing pathogens, the continuous use of single-shot single-drug SAP with cefuroxime (plus metronidazole in colorectal surgery) has been validated.
Resumo:
Although assessment of asthma control is important to guide treatment, it is difficult since the temporal pattern and risk of exacerbations are often unpredictable. In this Review, we summarise the classic methods to assess control with unidimensional and multidimensional approaches. Next, we show how ideas from the science of complexity can explain the seemingly unpredictable nature of bronchial asthma and emphysema, with implications for chronic obstructive pulmonary disease. We show that fluctuation analysis, a method used in statistical physics, can be used to gain insight into asthma as a dynamic disease of the respiratory system, viewed as a set of interacting subsystems (eg, inflammatory, immunological, and mechanical). The basis of the fluctuation analysis methods is the quantification of the long-term temporal history of lung function parameters. We summarise how this analysis can be used to assess the risk of future asthma episodes, with implications for asthma severity and control both in children and adults.
Resumo:
The objective of this research was to develop a high-fidelity dynamic model of a parafoilpayload system with respect to its application for the Ship Launched Aerial Delivery System (SLADS). SLADS is a concept in which cargo can be transfered from ship to shore using a parafoil-payload system. It is accomplished in two phases: An initial towing phase when the glider follows the towing vessel in a passive lift mode and an autonomous gliding phase when the system is guided to the desired point. While many previous researchers have analyzed the parafoil-payload system when it is released from another airborne vehicle, limited work has been done in the area of towing up the system from ground or sea. One of the main contributions of this research was the development of a nonlinear dynamic model of a towed parafoil-payload system. After performing an extensive literature review of the existing methods of modeling a parafoil-payload system, a five degree-of-freedom model was developed. The inertial and geometric properties of the system were investigated to predict accurate results in the simulation environment. Since extensive research has been done in determining the aerodynamic characteristics of a paraglider, an existing aerodynamic model was chosen to incorporate the effects of air flow around the flexible paraglider wing. During the towing phase, it is essential that the parafoil-payload system follow the line of the towing vessel path to prevent an unstable flight condition called ‘lockout’. A detailed study of the causes of lockout, its mathematical representation and the flight conditions and the parameters related to lockout, constitute another contribution of this work. A linearized model of the parafoil-payload system was developed and used to analyze the stability of the system about equilibrium conditions. The relationship between the control surface inputs and the stability was investigated. In addition to stability of flight, one more important objective of SLADS is to tow up the parafoil-payload system as fast as possible. The tension in the tow cable is directly proportional to the rate of ascent of the parafoil-payload system. Lockout instability is more favorable when tow tensions are large. Thus there is a tradeoff between susceptibility to lockout and rapid deployment. Control strategies were also developed for optimal tow up and to maintain stability in the event of disturbances.
Resumo:
This report presents the research results of battery modeling and control for hybrid electric vehicles (HEV). The simulation study is conducted using plug-and-play powertrain and vehicle development software, Autonomie. The base vehicle model used for testing the performance of battery model and battery control strategy is the Prius MY04, a power-split hybrid electric vehicle model in Autonomie. To evaluate the battery performance for HEV applications, the Prius MY04 model and its powertrain energy flow in various vehicle operating modes are analyzed. The power outputs of the major powertrain components under different driving cycles are discussed with a focus on battery performance. The simulation results show that the vehicle fuel economy calculated by the Autonomie Prius MY04 model does not match very well with the official data provided by the department of energy (DOE). It is also found that the original battery model does not consider the impact of environmental temperature on battery cell capacities. To improve battery model, this study includes battery current loss on coulomb coefficient and the impact of environmental temperature on battery cell capacity in the model. In addition, voltage losses on both double layer effect and diffusion effect are included in the new battery model. The simulation results with new battery model show the reduced fuel economy error to the DOE data comparing with the original Autonomie Prius MY04 model.
Resumo:
Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.