943 resultados para Novel fungal species
Resumo:
Primary adrenal insufficiency (PAI) is a rare condition in childhood which is either inherited (mostly) or acquired. It is characterized by glucocorticoid and maybe mineralocorticoid deficiency. The most common form in children is 21-hydroxylase deficiency, which belongs to the steroid biosynthetic defects causing PAI. Newer forms of complex defects of steroid biosynthesis are P450 oxidoreductase deficiency and (apparent) cortisone reductase deficiency. Other forms of PAI include metabolic disorders, autoimmune disorders and adrenal dysgenesis, e.g. the IMAGe syndrome, for which the underlying genetic defect has been recently identified. Newer work has also expanded the genetic causes underlying isolated, familial glucocorticoid deficiency (FGD). Mild mutations of CYP11A1 or StAR have been identified in patients with FGD. MCM4 mutations were found in a variant of FGD in an Irish travelling community manifesting with PAI, short stature, microcephaly and recurrent infections. Finally, mutations in genes involved in the detoxification of reactive oxygen species were identified in patients with unsolved FGD. Most mutations were found in the enzyme nicotinamide nucleotide transhydrogenase, which uses the mitochondrial proton pump gradient to produce NADPH. NADPH is essential in maintaining high levels of reduced forms of antioxidant enzymes for the reduction of hydrogen peroxide. Similarly, mutations in the gene for TXNRD2 involved in this system were found in FGD patients, suggesting that the adrenal cortex is particularly susceptible to oxidative stress.
Resumo:
Babesia are tick-borne parasites that are increasingly considered as a threat to animal and public health. We aimed to assess the role of European free-ranging wild ruminants as maintenance mammalian hosts for Babesia species and to determine risk factors for infection. EDTA blood was collected from 222 roe deer (Capreolus c. capreolus), 231 red deer (Cervus e. elaphus), 267 Alpine chamois (Rupicapra r. rupicapra) and 264 Alpine ibex (Capra i. ibex) from all over Switzerland and analysed by PCR with pan-Babesia primers targeting the 18S rRNA gene, primers specific for B. capreoli and Babesia sp. EU1, and by sequencing. Babesia species, including B. divergens, B. capreoli, Babesia sp. EU1, Babesia sp. CH1 and B. motasi, were detected in 10.7% of all samples. Five individuals were co-infected with two Babesia species. Infection with specific Babesia varied widely between host species. Cervidae were significantly more infected with Babesia spp. than Caprinae. Babesia capreoli and Babesia sp. EU1 were mostly found in roe deer (prevalences 17.1% and 7.7%, respectively) and B. divergens and Babesia sp. CH1 only in red deer. Factors significantly associated with infection were low altitude and young age. Identification of Babesia sp. CH1 in red deer, co-infection with multiple Babesia species and infection of wild Caprinae with B. motasi and Babesia sp. EU1 are novel findings. We propose wild Caprinae as spillover or accidental hosts for Babesia species but wild Cervidae as mammalian reservoir hosts for B. capreoli, possibly Babesia sp. EU1 and Babesia sp. CH1, whereas their role regarding B. divergens is more elusive.
Resumo:
A typical multivesiculated metacestode tissue has been found in the liver of a European brown hare (Lepus europaeus) originating from a northern area of Switzerland. In this study, the causative species was identified as Echinococcus multilocularis by appropriate histological and molecular analyses and corresponding DNA sequencing. This is the first confirmation of larval E. multilocularis from hares in central Europe. The metacestode tissue contained protoscolices, suggesting that the hare may contribute to the transmission of E. multilocularis in Switzerland.
Resumo:
Whereas the genetic background of horn growth in cattle has been studied extensively, little is known about the morphological changes in the developing fetal horn bud. In this study we histologically analyzed the development of horn buds of bovine fetuses between ~70 and ~268 days of pregnancy and compared them with biopsies taken from the frontal skin of the same fetuses. In addition we compared the samples from the wild type (horned) fetuses with samples taken from the horn bud region of age-matched genetically hornless (polled) fetuses. In summary, the horn bud with multiple layers of vacuolated keratinocytes is histologically visible early in fetal life already at around day 70 of gestation and can be easily differentiated from the much thinner epidermis of the frontal skin. However, at the gestation day (gd) 212 the epidermis above the horn bud shows a similar morphology to the epidermis of the frontal skin and the outstanding layers of vacuolated keratinocytes have disappeared. Immature hair follicles are seen in the frontal skin at gd 115 whereas hair follicles below the horn bud are not present until gd 155. Interestingly, thick nerve bundles appear in the dermis below the horn bud at gd 115. These nerve fibers grow in size over time and are prominent shortly before birth. Prominent nerve bundles are not present in the frontal skin of wild type or in polled fetuses at any time, indicating that the horn bud is a very sensitive area. The samples from the horn bud region from polled fetuses are histologically equivalent to samples taken from the frontal skin in horned species. This is the first study that presents unique histological data on bovine prenatal horn bud differentiation at different developmental stages which creates knowledge for a better understanding of recent molecular findings.
Resumo:
The in vitro activity of the novel antimicrobial peptide dendrimer G3KL was evaluated against 32 Acinetobacter baumannii (including 10 OXA-23, 7 OXA-24, and 11 OXA-58 carbapenemase producers) and 35 Pseudomonas aeruginosa (including 18 VIM and 3 IMP carbapenemase producers) strains and compared to the activities of standard antibiotics. Overall, both species collections showed MIC50/90 values of 8/8 μg/ml and minimum bactericidal concentrations at which 50% or 90% of strains tested are killed (MBC50/90) of 8/8 μg/ml. G3KL is a promising molecule with antibacterial activity against multidrug-resistant and extensively drug-resistant A. baumannii and P. aeruginosa isolates.
Resumo:
In the ectomycorrhizal caesalpiniaceous groves of southern Korup National Park, the dominant tree species, Microberlinia bisulcata, displays very poor in situ recruitment compared with its codominant, Tetraberlinia bifoliolata. The reported ex situ experiment tested whether availabilities of soil potassium and magnesium play a role. Seedlings of the two species received applications of K and Mg fertilizer in potted native soil in a local shade house, and their responses in terms of growth and nutrient concentrations were recorded over 2 years. Amended soil concentrations were also determined. Microberlinia responded strongly and positively in its growth to Mg, but less to K; Tetraberlinia responded weakly to both. Added Mg led to strongly increased Mg concentration for Microberlinia while added K changed that concentration only slightly; Tetraberlinia strongly increased its concentration of K with added K, but only somewhat its Mg concentration with added Mg. Additions of Mg and K had small but important antagonistic effects. Microberlinia is Mg-demanding and apparently Mg-limited in Korup soil; Tetraberlinia, whilst K-demanding, appeared not to be K-limited (for growth). Added K enhanced plant P concentrations of both species. Extra applied Mg may also be alleviating soil aluminum toxicity, and hence improving growth indirectly and especially to the benefit of Microberlinia. Mg appears to be essential for Microberlinia seedling growth and its low soil availability in grove soils at Korup may be an important contributing factor to its poor recruitment. Microberlinia is highly shade-intolerant and strongly light-responding, whilst Tetraberlinia is more shade-tolerant and moderately light-responding, which affords an interesting contrast with respect to their differing responses to Mg supply. The study revealed novel aspects of functional traits and likely niche-partitioning among ectomycorrhizal caesalps in African rain forests. Identifying the direct and interacting indirect effects of essential elements on tropical tree seedling growth presents a considerable challenge due the complex nexus of causes involved.
Resumo:
OBJECTIVE Glycerophospholipids and sphingolipids are structurally heterogeneous due to differences in the O- and N-linked fatty acids and head groups. Sphingolipids also show a heterogeneity in their sphingoid base composition which up to now has been little appreciated. The aim of this study was to investigate the association of certain glycerophospholipid and sphingolipid species with stable coronary artery disease (CAD) and acute myocardial infarction (AMI). METHODS The lipid profile in plasma from patients with stable CAD (n = 18) or AMI (n = 17) was compared to healthy subjects (n = 14). Sixty five glycerophospholipid and sphingolipid species were quantified by LC-MS. The relative distribution of these lipids into lipoprotein fractions was analyzed. RESULTS In the CAD cohort, 45 glycerophospholipid and sphingolipid species were significantly lower compared to healthy controls. In the AMI group, 42 glycerophospholipid and sphingolipid species were reduced. Four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) showed the most significant difference. Out of eleven analyzed sphingoid bases, four were lower in the CAD and six in the AMI group. Sphingosine-1-phosphate (S1P) levels were reduced in the AMI group whereas an atypical C16:1 S1P was lower in both groups. Phosphatidylcholine and sphingomyelin species were exclusively present in lipoprotein particles, whereas lysophosphatidylcholines were mainly found in the lipoprotein-free fraction. The observed differences were not explained by the use of statins as confirmed in a second, independent cohort. CONCLUSIONS Reduced levels of four PC plasmalogens (PC33:1, PC33:2, PC33:3 and PC35:3) were identified as a putatively novel lipid signature for CAD and AMI.
Resumo:
Alien plants provide a unique opportunity to study evolution in novel environments, but relatively little is known about the extent to which they become locally adapted to different environments across their new range. Here, we compare northern and southern populations of the introduced species Senecio squalidus in Britain; S. squalidus has been in southern Britain for approximately 200 years and reached Scotland only about 50 years ago. We conducted common garden experiments at sites in the north and south of the species’ range in Britain. We also conducted glasshouse and growth chamber experiments to test the hypothesis that southern genotypes flower later, are more drought-tolerant, germinate and establish better at warmer temperatures, and are less sensitive to cold stress than their more northern counterparts. Results from the common garden experiments are largely consistent with the hypothesis of rapid adaptive divergence of populations of the species within the introduced range, with genotypes typically showing a home-site advantage. Results from the glasshouse and growth chamber experiments demonstrate adaptive divergence in ability to tolerate drought stress and high temperatures, as well as in phenology. In particular, southern genotypes were more tolerant of dry conditions and high temperatures and they flowered later than northern genotypes. Our results show that rapid local adaptation can occur in alien species, and they have implications for our understanding of the ecological genetics of range expansion of introduced weeds.
Resumo:
By attacking plants, herbivorous mammals, insects, and belowground pathogens are known to play an important role in maintaining biodiversity in grasslands. Foliar fungal pathogens are ubiquitous in grassland ecosystems, but little is known about their role as drivers of community composition and diversity. Here we excluded foliar fungal pathogens from perennial grassland by using fungicide to determine the effect of natural levels of disease on an otherwise undisturbed plant community. Importantly, we excluded foliar fungal pathogens along with rabbits, insects, and mollusks in a full factorial design, which allowed a comparison of pathogen effects along with those of better studied plant enemies. This revealed that fungal pathogens substantially reduced aboveground plant biomass and promoted plant diversity and that this especially benefited legumes. The scale of pathogen effects on productivity and biodiversity was similar to that of rabbits and insects, but different plant species responded to the exclusion of the three plant enemies. These results suggest that theories of plant coexistence and management of biodiversity in grasslands should consider foliar fungal pathogens as potentially important drivers of community composition.
Resumo:
Genetic diversity in plant populations has been shown to affect the species diversity of insects. In grasses, infection with fungal endophytes can also have strong effects on insects, potentially modifying the effects of plant genetic diversity. We manipulated the genetic diversity and endophyte infection of a grass in a field experiment. We show that diversity of primary parasitoids (3rd trophic level) and, especially, secondary parasitoids (4th trophic level) increases with grass genetic diversity while there was no effect of endophyte infection. The increase in insect diversity appeared to be due to a complementarity effect rather than a sampling effect. The higher parasitoid diversity could not be explained by a cascading diversity effect because herbivore diversity was not affected and the same herbivore species were present in all treatments. The effects on the higher trophic levels must therefore be due to a direct response to plant traits or mediated by effects on traits at intermediate trophic levels.
Resumo:
Antibiotic resistance in Ureaplasma urealyticum/Ureaplasma parvum and Mycoplasma hominis is an issue of increasing importance. However, data regarding the susceptibility and, more importantly, the clonality of these organisms are limited. We analyzed 140 genital samples obtained in Bern, Switzerland, in 2014. Identification and antimicrobial susceptibility tests were performed by using the Mycoplasma IST 2 kit and sequencing of 16S rRNA genes. MICs for ciprofloxacin and azithromycin were obtained in broth microdilution assays. Clonality was analyzed with PCR-based subtyping and multilocus sequence typing (MLST), whereas quinolone resistance and macrolide resistance were studied by sequencing gyrA, gyrB, parC, and parE genes, as well as 23S rRNA genes and genes encoding L4/L22 ribosomal proteins. A total of 103 samples were confirmed as positive for U. urealyticum/U. parvum, whereas 21 were positive for both U. urealyticum/U. parvum and M. hominis. According to the IST 2 kit, the rates of nonsusceptibility were highest for ciprofloxacin (19.4%) and ofloxacin (9.7%), whereas low rates were observed for clarithromycin (4.9%), erythromycin (1.9%), and azithromycin (1%). However, inconsistent results between microdilution and IST 2 kit assays were recorded. Various sequence types (STs) observed previously in China (ST1, ST2, ST4, ST9, ST22, and ST47), as well as eight novel lineages, were detected. Only some quinolone-resistant isolates had amino acid substitutions in ParC (Ser83Leu in U. parvum of serovar 6) and ParE (Val417Thr in U. parvum of serovar 1 and the novel Thr417Val substitution in U. urealyticum). Isolates with mutations in 23S rRNA or substitutions in L4/L22 were not detected. This is the first study analyzing the susceptibility of U. urealyticum/U. parvum isolates in Switzerland and the clonality outside China. Resistance rates were low compared to those in other countries. We hypothesize that some hyperepidemic STs spread worldwide via sexual intercourse. Large combined microbiological and clinical studies should address this important issue.
Resumo:
Tick-borne encephalitis (TBE) is one of the most dangerous human neurological infections occurring in Europe and Northern parts of Asia with thousands of cases and millions vaccinated against it. The risk of TBE might be assessed through analyses of the samples taken from wildlife or from animals which are in close contact with humans. Dogs have been shown to be a good sentinel species for these studies. Serological assays for diagnosis of TBE in dogs are mainly based on purified and inactivated TBEV antigens. Here we describe novel dog anti-TBEV IgG monoclonal antibody (MAb)-capture assay which is based on TBEV prME subviral particles expressed in mammalian cells from Semliki Forest virus (SFV) replicon as well as IgG immunofluorescence assay (IFA) which is based on Vero E6 cells transfected with the same SFV replicon. We further demonstrate their use in a small-scale TBEV seroprevalence study of dogs representing different regions of Finland. Altogether, 148 dog serum samples were tested by novel assays and results were compared to those obtained with a commercial IgG enzyme immunoassay (EIA), hemagglutination inhibition test and IgG IFA with TBEV infected cells. Compared to reference tests, the sensitivities of the developed assays were 90-100% and the specificities of the two assays were 100%. Analysis of the dog serum samples showed a seroprevalence of 40% on Åland Islands and 6% on Southwestern archipelago of Finland. In conclusion, a specific and sensitive EIA and IFA for the detection of IgG antibodies in canine sera were developed. Based on these assays the seroprevalence of IgG antibodies in dogs from different regions of Finland was assessed and was shown to parallel the known human disease burden as the Southwestern archipelago and Åland Islands in particular had considerable dog TBEV antibody prevalence and represent areas with high risk of TBE for humans.
Resumo:
Three features of the heat shock response, reorganization of protein expression, intracellular accumulation of trehalose, and alteration in unsaturation degree of fatty acids were investigated in the thermophilic fungus Chaetomium thermophile and compared to the response displayed by a closely related mesophilic species, C. brasiliense. Thermophilic heat shock response paralleled the mesophilic response in many respects like (i) the temperature difference observed between normothermia and the upper limit of translational activity, (ii) the transient nature of the heat shock response at the level of protein expression including both the induction of heat shock proteins (HSPs) as well as the repression of housekeeping proteins, (iii) the presence of representatives of high-molecular-weight {HSPs} families, (iv) intracellular accumulation of trehalose, and finally (v) modifications in fatty acid composition. On the other hand, a great variability between the two organisms was observed for the proteins expressed during stress, in particular a protein of the {HSP60} family that was only observed in C. thermophile. This peptide was also present constitutively at normal temperature and may thus fulfil thermophilic functions. It is shown that accumulation of trehalose does not play a part in thermophily but is only a stress response. C. thermophile contains less polyunsaturated fatty acids at normal temperature than C. brasiliense, a fact that can be directly related to thermophily. When subjected to heat stress, both organisms tended to accumulate shorter and less unsaturated fatty acids.
Resumo:
The cytochrome P450 4F subfamily comprises a group of enzymes that metabolize derivatives of arachidonic acid such as prostaglandins, lipoxins leukotrienes and hydroxyeicosatetraenoic acids, which are important mediators involved in the inflammatory response. Therefore, we speculate that CYP4Fs might be able to modulate the extent of the inflammation by controlling of the tissue levels of these inflammatory mediators, especially, leukotriene B4. One way to provide support for this hypothesis is to test whether the expression of CYP4Fs changes under inflammatory conditions, since these changes are required to adjust the levels of inflammatory mediators. ^ A lipopolysacchride (LPS) induced rat inflammation model was used to analyze the expressions of rat CYP4F4 and CYP4F5 in liver and kidney. LPS administration did not change the constitutive expression level of CYP4F4 and CYP4F5. In liver, the expressions of CYP4F4 and CYP4F5 decreased to 50–60% of the untreated level. The same effect of LPS on CYP4F4 and CYP4F5 expression can be mimicked in hepatocyte primary cultures treated with LPS, indicating a direct of effect of LPS on hepatocytes. LPS treatment also decreased the activity of liver microsomes towards chlorpromazine, however, antibody inhibition study revealed that liver CYP4Fs are not the only players in metabolizing chlorpromazine. To study further the underlying mechanism, CYP4F5 gene was isolated, characterized, and the promoter region was defined. ^ Accumulating evidence showed that peroxisome proliferator-activated receptors (PPARs) play an active role in inflammation. To investigate the possible role of PPARα in regulating CYP4F expression by inflammation or by clofibrate treatment, the expressions of two new mouse 4F isoforms were analyzed in PPARα knockout mice upon LPS or clofibrate challenge. A novel induction of CYP4F15 by LPS and clofibrate was observed in kidney, and this effect is totally dependent on the presence of PPARα. Renal CYP4F16 expression was not affected by LPS or clofibrate in both (+/+) and (−/−) mice. In contrast, hepatic expressions of CYP4F15 and CYP4F16 were reduced significantly in (+/+) mice, but much less in (−/−) mice, suggesting that PPARα is partially responsible for this down-regulation. Clofibrate treatment reduced the expression of CYP4F16 in liver, but has no effect on CYP4F15 and PPARα does not have a role in hepatic CYP4F expression regulated by clofibrate. In general, CYP4Fs are regulated in an isoform-, tissue- and species-specific manner. ^ A human CYP4F isoform, CYP4F11, was isolated. The genomic structure was also solved by using database mining and bioinformatics tools. Localization of CYP4F11 to chromosome 19, 16 kb upstream of CYP4F2, suggests that human CYP4F genes may form a cluster on chromosome 19. This novel human 4F is highly expressed in liver, as well as in kidney, heart and skeletal muscle. Further study of the activity and gene regulation on CYP4F11 will provide us more insights into the physiological functions of CYP4F subfamily. ^
Resumo:
4HPR is a synthetic retinoid that has shown chemopreventive and therapeutic efficacy against premalignant and malignant lesions including oral leukoplakia, ovarian and breast cancer, and neuroblastoma. 4HPR induces apoptosis in various cancer cells and production of reactive oxygen species (ROS) has been suggested as a possible cause underlying these effects. However, the mechanisms governing these effects by 4HPR are not fully elucidated. In this study, we explored the mechanisms of 4HPR-induced ROS increase and apoptosis in human cancer cells. ^ First, we identified genes modulated by 4HPR using oligonucleotide gene expression arrays and found that they fall into specific functional canonical pathways and gene networks using Ingenuity Pathways Analysis®. Further analysis has shown that 4HPR induced up-regulation of Endoplasmic Reticulum (ER)-related genes such as Heat shock proteins 70 and 90 and the transcriptional factor, GADD153. These findings were validated using quantitative real-time PCR. ^ Second, we found that 4HPR induced extensive ER stress evidenced by dilation of the ER and endoribonuclease-mediated splicing and activation of the transcriptional factor, XBP-1. In addition, 4HPR induced the up-regulation of various ER stress-related genes and their protein products, as well as cleavage and activation of the ER specific Caspase-4. Concomitantly with XBP-1 splicing, all of these effects were dependent on ROS generation by 4HPR. Furthermore, chemical inhibition and RNA interference studies revealed a novel pro-apoptotic role for HSP70/A1A in 4HPR-mediated apoptosis. ^ Third, we observed rapid activation of the small GTPase Rac by 4HPR which was upstream of ROS generation. Inhibition of Rac activity or silencing of its expression by RNA interference inhibited ROS generation and apoptosis induction by 4HPR. siRNA targeting PAK1 and expression of a dominant negative Rac, decreased 4HPR-mediated ROS generation, while expression of a constitutive active Rac increased basal and 4HPR-induced ROS generation and PARP cleavage. Furthermore, metastatic cancer cells exhibited higher Rac activation, ROS generation, and cell growth inhibition due to 4HPR exposure compared to their primary cancer cell counterparts. ^ These findings provide novel insights into 4HPR-mediated ROS generation and apoptosis induction and support the use of ROS inducing agents such as 4HPR against metastatic cancer cells. ^