952 resultados para New Structures
Resumo:
Mode of access: Internet.
Resumo:
Maps on lining papers.
Resumo:
Compiled and edited in cooperation with the American Railway Engineering Association and, 1926- the Signal Section, Association of American Railroads (formerly American Railway Association)
Resumo:
Mode of access: Internet.
Resumo:
This article discusses the Carbon Credit Trading Market in Brazil and opportunities for technological development and innovation related. The international trade in carbon credits becomes a source of opportunities for developing countries because of the Clean Development Mechanism. Committed to reduce polluting levels from 2008 to 2012, and ahead, industrialized countries started to seek ecological solutions internally or compensatory actions such as buying carbon credits from low-emission countries. This strategy brought up a brand-new industrial sector that still requires productive structures and a solid international commercialization system. This is a qualitative study, based on documentary research, referring to the Brazilian territory. The data obtained point out a set of efforts such as researching and developing products and processes environment friendly. Other findings indicate opportunities to expand Green Economy Sector through supporting a set of newborn firms such as waste management and recycling, in addition to other actions that reinforce sustainable development opportunities to the country and, at the end, to the world.
Resumo:
Cyclic tetrapeptides are an intriguing class of natural products. To synthesize highly strained cyclic tetrapeptides; we developed a macrocyclization strategy that involves the inclusion of 2-hydroxy-6-nitrobenzyl (HnB) group at the N-terminus and in the middle of the sequence. The N-terminal auxiliary performs a ring closure/ring contraction role, and the backbone auxiliary promotes cis amide bonds to facilitate the otherwise difficult ring contraction. Following this route, the all-L cyclic tetrapeptide cyclo-[Tyr-Arg-Phe-Ala] was successfully prepared.
Resumo:
A great deal of effort has been made at searching for alternative catalysts to replace conventional Lewis acid catalyst aluminum trichloride (AlCl3). In this paper, immobilization of AlCl3 on mesoporous MCM-41 silica with and without modification was carried out. The catalytic properties of the immobilized catalyst systems for liquid-phase isopropylation of naphthalene were studied and compared with those of H/MCM-41 and H/mordenite. The structures of the surface-immobilized aluminum chloride catalysts were studied and identified by using solid-state magic angle spinning nuclear magnetic resonance (MAS NMR), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), nitrogen adsorption, and X-ray diffraction (XRD) techniques. The catalytic activity of the immobilized catalysts was found to be similar to that of acidic mordenite zeolite. A significant enhancement in the selectivity of 2,6-diisopropylnaphthalene (2,6-DIPN) was observed over the immobilized aluminum chloride catalysts. Immobilization of aluminum chloride on mesoporous silica coupled with surface silylation is a promising way of developing alternative catalyst system for liquid-phase Friedel-Crafts alkylation reactions. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
New tin(IV) complexes of empirical formula, Sn(NNS)I-3 (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. In the solid state, the Schiff bases exist as the thione tautomer but in solution and in the presence of tin(IV) iodide they convert to the thiol tautomer and coordinate to the tin atom in their deprotonated thiolate forms. The structures of the free ligand, Hqaldsbz and its triiodotin(IV) complex, [Sn(qaldsbz)I-3] have been determined by X-ray diffraction. The complex, [Sn(qaldsbz)I-3] has a distorted octahedral structure with the Schiff base coordinated to the tin atom as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The three iodo ligands are coordinated meridionally to the tin atom. The distortion from an ideal octahedral geometry of [Sn(qaldsbz)I-3] is attributed to the restricted bite size of the tridentate Schiff base ligand. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
A new indole alkaloid, akuammiginone (1), and a new glycosidic indole alkaloid, echitamidine-N-oxide 19-O-beta-D-glucopyranoside (2), together with the five known alkaloids, echitaminic acid (3), echitamidine N-oxide (4), N-b-demethylalstogustine N-oxide (5), akuammicine N-oxide (6), and N-b-demethylalstogustine (7), were isolated from the trunk bark of Alstonia scholaris collected in Timor, Indonesia. The structures of all compounds were elucidated by spectroscopic methods. This is the first report of compounds 3-5 and 7 in A. scholaris. Some NMR assignments of the known compounds were revised.
Resumo:
Two new indole alkaloids, polyneuridine-N-oxide (1) and 17-hydroxy-10-methoxy-yohimbane (2), together with seven known alkaloids were isolated from the roots of Ochrosia acuminata collected in Savu, Indonesia. 9-Methoxyellipticine (3) and ellipticine (4) were responsible for the antitumor activities of the extract. The structures of all compounds were elucidated using MS and NMR methods.
Resumo:
Human C5a is a plasma protein with potent chemoattractant and pro-inflammatory properties, and its overexpression correlates with severity of inflammatory diseases. C5a binds to its G protein-coupled receptor (C5aR) on polymorphonuclear leukocytes (PMNLs) through a high-affinity helical bundle and a low-affinity C terminus, the latter being solely responsible for receptor activation. Potent and selective C5a antagonists are predicted to be effective anti-inflammatory drugs, but no pharmacophore for small molecule antagonists has yet been developed, and it would significantly aid drug design. We have hypothesized that a turn conformation is important for activity of the C terminus of C5a and herein report small cyclic peptides that are stable turn mimics with potent antagonism at C5aR on human PMNLs. A comparison of solution structures for the C terminus of C5a, small acyclic peptide ligands, and cyclic antagonists supports the importance of a turn for receptor binding. Competition between a cyclic antagonist and either C5a or an acyclic agonist for C5aR on PMNLs supports a common or overlapping binding site on the C5aR. Structure-activity relationships for 60 cyclic analogs were evaluated by competitive radioligand binding with C5a (affinity) and myeloperoxidase release (antagonist potency) from human PMNLs, with 20 compounds having high antagonist potencies (IC50, 20 nM(-1) muM). Computer modeling comparisons reveal that potent antagonists share a common cyclic backbone shape, with affinity-determining side chains of defined volume projecting from the cyclic scaffold. These results define a new pharmacophore for C5a antagonist development and advance our understanding of ligand recognition and receptor activation of this G protein-coupled receptor.
Resumo:
There is a growing need for innovative methods of dealing with complex, social problems. New types of collaborative efforts have emerged as a result of the inability of more traditional bureaucratic hierarchical arrangements such as departmental program, to resolve these problems. Network structures are one such arrangement that Is at the forefront of this movement. Although collaboration through network structures establishes an innovative response to dealing with social issues, there remains an expectation that outcomes and processes are based on traditional ways of working. It is necessary for practitioners and policy makers alike to begin to understand the realities of what can be expected from network structures in order to maximize the benefits of these unique mechanisms.
Resumo:
An Australian isolate of Penicillium striatisporum collected near Shalvey, New South Wales, exhibited selective antifungal activity against Candida albicans versus Saccharomyces cerevisiae. Bioassay-directed fractionation yielded members of the rare class of fungal metabolites known as the calbistrins. These included a new example of this structure class, calbistrin E (1), as well as the known polyenes calbistrin C (2) and deformylcalbistrin A (3). Also recovered from P. striatisporum were new triene and butenolide acids, striatisporin A (4) and striatisporolide A (5), together with the known fungal metabolites versiol (6) and (+)-hexylitaconic acid (7). Structures for all metabolites were determined by detailed spectroscopic analysis.
Resumo:
New organometallic tin(IV) complexes of the empirical formula Sn(NNS)Ph2Cl (NNS = anionic forms of the 2-quinolinecarboxaldehyde Schiff bases of S-methyl- and S-benzyldithiocarbazate) have been prepared and characterized by IR, electronic, I H NMR and ES mass spectroscopic techniques. The molecular structures of the 2-quinolinecarboxaldehyde Schiff base of S-methyldithiocarbazate (Hqaldsme) and its diphenyltin(IV) complex, Sn(qaldsme)Ph2Cl, have been determined by X-ray diffraction. In the solid state, the ligand remains as the thione tautomer in which the dithiocarbazate chain adopts an E,E configuration and is almost coplanar with the quinoline ring. The Sn(qaldsme)Ph2Cl complex crystallizes in two distinctly different conformationally isomeric forms, each having the same space group but different lattice parameters. X-ray analysis shows that in each polymorph, the tin atom adopts a distorted octahedral geometry with the Schiff base coordinated to it as a uninegatively charged tridentate chelating agent via the quinoline nitrogen atom, the azomethine nitrogen atom and the thiolate sulfur atom. The two phenyl groups occupy axial positions and the chloride ligand occupies the sixth coordination position of the tin atom. The deprotonated ligand adopts an E,E,Z configuration in the complex. (C) 2004 Elsevier Ltd. All rights reserved.