919 resultados para Natriuretc peptides


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tendency of a polypeptide chain to form alpha-helical or beta-strand secondary structure depends upon local and nonlocal effects. Local effects reflect the intrinsic propensities of the amino acid residues for particular secondary structures, while nonlocal effects reflect the positioning of the individual residues in the context of the entire amino acid sequence. In particular, the periodicity of polar and nonpolar residues specifies whether a given sequence is consistent with amphiphilic alpha-helices or beta-strands. The importance of intrinsic propensities was compared to that of polar/nonpolar periodicity by a direct competition. Synthetic peptides were designed using residues with intrinsic propensities that favored one or the other type of secondary structure. The polar/nonpolar periodicities of the peptides were designed either to be consistent with the secondary structure favored by the intrinsic propensities of the component residues or in other cases to oppose these intrinsic propensities. Characterization of the synthetic peptides demonstrated that in all cases the observed secondary structure correlates with the periodicity of the peptide sequence--even when this secondary structure differs from that predicted from the intrinsic propensities of the component amino acids. The observed secondary structures are concentration dependent, indicating that oligomerization of the amphiphilic peptides is responsible for the observed secondary structures. Thus, for self-assembling oligomeric peptides, the polar/nonpolar periodicity can overwhelm the intrinsic propensities of the amino acid residues and serves as the major determinant of peptide secondary structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

HLA-DR13 has been associated with resistance to two major infectious diseases of humans. To investigate the peptide binding specificity of two HLA-DR13 molecules and the effects of the Gly/Val dimorphism at position 86 of the HLA-DR beta chain on natural peptide ligands, these peptides were acid-eluted from immunoaffinity-purified HLA-DRB1*1301 and -DRB1*1302, molecules that differ only at this position. The eluted peptides were subjected to pool sequencing or individual peptide sequencing by tandem MS or Edman microsequencing. Sequences were obtained for 23 peptides from nine source proteins. Three pool sequences for each allele and the sequences of individual peptides were used to define binding motifs for each allele. Binding specificities varied only at the primary hydrophobic anchor residue, the differences being a preference for the aromatic amino acids Tyr and Phe in DRB1*1302 and a preference for Val in DRB1*1301. Synthetic analogues of the eluted peptides showed allele specificity in their binding to purified HLA-DR, and Ala-substituted peptides were used to identify the primary anchor residues for binding. The failure of some peptides eluted from DRB1*1302 (those that use aromatic amino acids as primary anchors) to bind to DRB1*1301 confirmed the different preferences for peptide anchor residues conferred by the Gly-->Val change at position 86. These data suggest a molecular basis for the differential associations of HLA-DRB1*1301 and DRB1*1302 with resistance to severe malaria and clearance of hepatitis B virus infection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arginine-rich domains are used by a variety of RNA-binding proteins to recognize specific RNA hairpins. It has been shown previously that a 17-aa arginine-rich peptide from the human immunodeficiency virus Rev protein binds specifically to its RNA site when the peptide is in an alpha-helical conformation. Here we show that related peptides from splicing factors, viral coat proteins, and bacteriophage antiterminators (the N proteins) also have propensities to form alpha-helices and that the N peptides require helical conformations to bind to their cognate RNAs. In contrast, introducing proline mutations into the arginine-rich domain of the human immunodeficiency virus Tat protein abolishes its potential to form an alpha-helix but does not affect RNA-binding affinity in vitro or in vivo. Based on results from several peptide-RNA model systems, we suggest that helical peptides may be used to recognize RNA structures having particularly wide major grooves, such as those found near loops or large bulges, and that nonhelical or extended peptides may be used to recognize less accessible grooves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Srp1p, the protein encoded by SRP1 of Saccharomyces cerevisiae, is a nuclear-pore-associated protein. Its Xenopus homolog, importin, was recently shown to be an essential component required for nuclear localization signal (NLS)-dependent binding of karyophilic proteins to the nuclear envelope [Gorlich, D., Prehn, S., Laskey, R. A. & Hartman, E. (1994) Cell 79, 767-778]. We have discovered a protein kinase whose activity is stimulated by Srp1p (Srp1p fused to glutathione S-transferase and expressed in Escherichia coli) and is detected by phosphorylation of Srp1p and of a 36-kDa protein, a component of the protein kinase complex. The enzyme, called Srp1p kinase, is a protein-serine kinase and was found in extracts in two related complexes of approximately 180 kDa and 220 kDa. The second complex, when purified, contained four protein components including the 36-kDa protein. We observed that, upon purification of the kinase, phosphorylation of Srp1p became very weak, while activation of phosphorylation of the 36-kDa protein by Srp1p remained unaltered. Significantly, NLS peptides and the nuclear proteins we have tested greatly stimulated phosphorylation of Srp1p, suggesting that Srp1p, complexed with karyophilic proteins carrying an NLS, is the in vivo substrate of this protein kinase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

NCN palladium(II) complexes have been covalently attached to the N- and C-terminus of the dipeptide L-Phe-L-Va-OMe. Remarkably, the hydrolysis of the NCN-Pd(II) L-Val-OMe afforded the corresponding, palladated free amino acid without affecting the metal site. This deprotected amino acid could be coupled to any protein, enzyme or peptidic chain by simple peptide chemistry. This bioorganometallic systems were active as catalysts in the aldol reaction between methyl isocianate and benzaldehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-05

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to investigate whether peptides from the extracellular loops of the tight junction protein occludin could be used as a new principle for tight junction modulation. Peptides of 4 to 47 amino acids in length and covering the two extracellular loops of the tight junction protein occludin were synthesized, and their effect on the tight junction permeability in Caco-2 cells was investigated using [C-14] mannitol as a paracellular marker. Lipopeptide derivatives of one of the active occludin peptides (OPs), synthesized by adding a lipoamino acid containing 14 carbon atoms (C-14-) to the N terminus of the peptide, were also investigated. Peptides corresponding to the N terminus of the first extracellular loop of occludin increased the permeability of the tight junctions without causing short-term toxicity. However, the peptides had an effect only when added to the basolateral side of the cells, which could be partly explained by degradation by apical peptidases and aggregate formation. By contrast, the lipopeptide C-14-OP90-103, which protects the peptide from degradation and aggregation, displayed a rapid apical effect. The L- and D-diastereomers of C-14-OP90-103 had distinctly different effects. The D-isomer, which releases intact OP90-103 from the lipoamino acid, displayed a rapid and transient increase in tight junction permeability. The L- isomer, which releases OP90-103 more rapidly, gave a more sustained increase in tight junction permeability. In conclusion, C-14-OP90-103 represents a prototype of a new class of tight junction modulators that act on the extracellular domains of tight junction proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purple acid phosphatases are metal-containing hydrolases. While their precise biological role(s) is unknown, the mammalian enzyme has been linked in a variety of biological circumstances (e.g., osteoporosis) with increased bone resorption. Inhibition of the human enzyme is a possible strategy for the treatment of bone-resorptive diseases such as osteoporosis. Previously, we determined the crystal structure of pig purple acid phosphatase to 1.55 Angstrom and we showed that it is a good model for the human enzyme. Here, a study of the pH dependence of its kinetic parameters showed that the pig enzyme is most efficient at pH values similar to those encountered in the osteoclast resorptive space. Based on the observation that phosphotyrosine-containing peptides are good substrates for pig purple acid phosphatase, peptides containing a range of phosphotyrosine mimetics were synthesized. Kinetic analysis showed that they act as potent inhibitors of mammalian and plant purple acid phosphatases, with the best inhibitors exhibiting low micromolar inhibition constants at pH 3-5. These compounds are thus the most potent organic inhibitors yet reported for the purple acid phosphatases. (C) 2004 Published by Elsevier Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sliding clamp of the Escherichia coli replisome is now understood to interact with many proteins involved in DNA synthesis and repair. A universal interaction motif is proposed to be one mechanism by which those proteins bind the E. coli sliding clamp, a homodimer of the beta subunit, at a single site on the dimer. The numerous beta(2)-binding proteins have various versions of the consensus interaction motif, including a related hexameric sequence. To determine if the variants of the motif could contribute to the competition of the beta-binding proteins for the beta(2) site, synthetic peptides derived from the putative beta(2)-binding motifs were assessed for their abilities to inhibit protein-beta(2) interactions, to bind directly to beta(2), and to inhibit DNA synthesis in vitro. A hierarchy emerged, which was consistent with sequence similarity to the pentameric consensus motif, QL(S/D)LF, and peptides containing proposed hexameric motifs were shown to have activities comparable to those containing the consensus sequence. The hierarchy of peptide binding may be indicative of a competitive hierarchy for the binding of proteins to beta(2) in various stages or circumstances of DNA replication and repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The plant cyclotides are a fascinating family of circular proteins that contain a cyclic cystine knot motif (CCK). This unique family was discovered only recently but contains over 50 known sequences to date. Various biological activities are associated with these peptides including antimicrobial and insecticidal activity. The knotted topology and cyclic nature of the cyclotides; poses interesting questions about the folding mechanisms and how the knotted arrangement of disulfide bonds is formed. Some studies have been performed on related inhibitor cystine knot (ICK) containing peptides, but little is known about the folding mechanisms of CCK molecules. We have examined the oxidative refolding and reductive unfolding of the prototypic member of the cyclotide family, kalata B1. Analysis of the rates of formation of the intermediates along the reductive unfolding pathway highlights the stability conferred by the cystine knot motif. Significant differences are observed between the folding of kalata B1 and an acyclic cystine knot protein, EETI-II, suggesting that the circular backbone has a significant influence in directing the folding pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A problem facing the use of subunit peptide and protein vaccines is their inability to stimulate protective immune responses. Many different approaches have been utilized to overcome this inefficient immune activation. The approach we have taken is to modify the vaccine antigen so that it now has adjuvant properties. To do this, multiple copies of minimal CD8 T cell epitopes were attached to a poly lysine lipid core. These constructs are known as lipid-core-peptides (LCP). The research presented here examines the adjuvant activity of LCP. Using mouse models, we were able to show that LCP were indeed able to activate antigen-presenting cells in vitro and to activate cytotoxic T-cell responses in vivo. More importantly, LCP were able to stimulate the development of a protective antitumour immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new safety-catch linker for Fmoc solid-phase peptide synthesis of cyclic peptides is reported. The linear precursors were assembled on a tert-butyl protected catechol derivative using optimized conditions for Fmoc-removal. After activation of the linker using TFA, neutralization of the N-terminal amine induced cyclization with concomitant cleavage from the resin yielding the cyclic peptides in DMF solution. Several constrained cyclic peptides were synthesized in excellent yields and purities. Copyright (c) 2005 European Peptide Society and John Wiley & Sons, Ltd.