815 resultados para NETWORK ANALYSIS
Resumo:
To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.
Resumo:
We investigated the seasonal patterns of Amazonian forest photosynthetic activity, and the effects thereon of variations in climate and land-use, by integrating data from a network of ground-based eddy flux towers in Brazil established as part of the ‘Large-Scale Biosphere Atmosphere Experiment in Amazonia’ project. We found that degree of water limitation, as indicated by the seasonality of the ratio of sensible to latent heat flux (Bowen ratio) predicts seasonal patterns of photosynthesis. In equatorial Amazonian forests (5◦ N–5◦ S), water limitation is absent, and photosynthetic fluxes (or gross ecosystem productivity, GEP) exhibit high or increasing levels of photosynthetic activity as the dry season progresses, likely a consequence of allocation to growth of new leaves. In contrast, forests along the southern flank of the Amazon, pastures converted from forest, and mixed forest-grass savanna, exhibit dry-season declines in GEP, consistent with increasing degrees of water limitation. Although previous work showed tropical ecosystem evapotranspiration (ET) is driven by incoming radiation, GEP observations reported here surprisingly show no or negative relationships with photosynthetically active radiation (PAR). Instead, GEP fluxes largely followed the phenology of canopy photosynthetic capacity (Pc), with only deviations from this primary pattern driven by variations in PAR. Estimates of leaf flush at three
Resumo:
Il presente lavoro di tesi si inserisce nell’ambito della classificazione di dati ad alta dimensionalità, sviluppando un algoritmo basato sul metodo della Discriminant Analysis. Esso classifica i campioni attraverso le variabili prese a coppie formando un network a partire da quelle che hanno una performance sufficientemente elevata. Successivamente, l’algoritmo si avvale di proprietà topologiche dei network (in particolare la ricerca di subnetwork e misure di centralità di singoli nodi) per ottenere varie signature (sottoinsiemi delle variabili iniziali) con performance ottimali di classificazione e caratterizzate da una bassa dimensionalità (dell’ordine di 101, inferiore di almeno un fattore 103 rispetto alle variabili di partenza nei problemi trattati). Per fare ciò, l’algoritmo comprende una parte di definizione del network e un’altra di selezione e riduzione della signature, calcolando ad ogni passaggio la nuova capacità di classificazione operando test di cross-validazione (k-fold o leave- one-out). Considerato l’alto numero di variabili coinvolte nei problemi trattati – dell’ordine di 104 – l’algoritmo è stato necessariamente implementato su High-Performance Computer, con lo sviluppo in parallelo delle parti più onerose del codice C++, nella fattispecie il calcolo vero e proprio del di- scriminante e il sorting finale dei risultati. L’applicazione qui studiata è a dati high-throughput in ambito genetico, riguardanti l’espressione genica a livello cellulare, settore in cui i database frequentemente sono costituiti da un numero elevato di variabili (104 −105) a fronte di un basso numero di campioni (101 −102). In campo medico-clinico, la determinazione di signature a bassa dimensionalità per la discriminazione e classificazione di campioni (e.g. sano/malato, responder/not-responder, ecc.) è un problema di fondamentale importanza, ad esempio per la messa a punto di strategie terapeutiche personalizzate per specifici sottogruppi di pazienti attraverso la realizzazione di kit diagnostici per l’analisi di profili di espressione applicabili su larga scala. L’analisi effettuata in questa tesi su vari tipi di dati reali mostra che il metodo proposto, anche in confronto ad altri metodi esistenti basati o me- no sull’approccio a network, fornisce performance ottime, tenendo conto del fatto che il metodo produce signature con elevate performance di classifica- zione e contemporaneamente mantenendo molto ridotto il numero di variabili utilizzate per questo scopo.
Resumo:
OBJECTIVE: To determine the effect of glucosamine, chondroitin, or the two in combination on joint pain and on radiological progression of disease in osteoarthritis of the hip or knee. Design Network meta-analysis. Direct comparisons within trials were combined with indirect evidence from other trials by using a Bayesian model that allowed the synthesis of multiple time points. MAIN OUTCOME MEASURE: Pain intensity. Secondary outcome was change in minimal width of joint space. The minimal clinically important difference between preparations and placebo was prespecified at -0.9 cm on a 10 cm visual analogue scale. DATA SOURCES: Electronic databases and conference proceedings from inception to June 2009, expert contact, relevant websites. Eligibility criteria for selecting studies Large scale randomised controlled trials in more than 200 patients with osteoarthritis of the knee or hip that compared glucosamine, chondroitin, or their combination with placebo or head to head. Results 10 trials in 3803 patients were included. On a 10 cm visual analogue scale the overall difference in pain intensity compared with placebo was -0.4 cm (95% credible interval -0.7 to -0.1 cm) for glucosamine, -0.3 cm (-0.7 to 0.0 cm) for chondroitin, and -0.5 cm (-0.9 to 0.0 cm) for the combination. For none of the estimates did the 95% credible intervals cross the boundary of the minimal clinically important difference. Industry independent trials showed smaller effects than commercially funded trials (P=0.02 for interaction). The differences in changes in minimal width of joint space were all minute, with 95% credible intervals overlapping zero. Conclusions Compared with placebo, glucosamine, chondroitin, and their combination do not reduce joint pain or have an impact on narrowing of joint space. Health authorities and health insurers should not cover the costs of these preparations, and new prescriptions to patients who have not received treatment should be discouraged.
Resumo:
The Default Mode Network (DMN) is a higher order functional neural network that displays activation during passive rest and deactivation during many types of cognitive tasks. Accordingly, the DMN is viewed to represent the neural correlate of internally-generated self-referential cognition. This hypothesis implies that the DMN requires the involvement of cognitive processes, like declarative memory. The present study thus examines the spatial and functional convergence of the DMN and the semantic memory system. Using an active block-design functional Magnetic Resonance Imaging (fMRI) paradigm and Independent Component Analysis (ICA), we trace the DMN and fMRI signal changes evoked by semantic, phonological and perceptual decision tasks upon visually-presented words. Our findings show less deactivation during semantic compared to the two non-semantic tasks for the entire DMN unit and within left-hemispheric DMN regions, i.e., the dorsal medial prefrontal cortex, the anterior cingulate cortex, the retrosplenial cortex, the angular gyrus, the middle temporal gyrus and the anterior temporal region, as well as the right cerebellum. These results demonstrate that well-known semantic regions are spatially and functionally involved in the DMN. The present study further supports the hypothesis of the DMN as an internal mentation system that involves declarative memory functions.
Resumo:
Obesity is a multifactorial trait, which comprises an independent risk factor for cardiovascular disease (CVD). The aim of the current work is to study the complex etiology beneath obesity and identify genetic variations and/or factors related to nutrition that contribute to its variability. To this end, a set of more than 2300 white subjects who participated in a nutrigenetics study was used. For each subject a total of 63 factors describing genetic variants related to CVD (24 in total), gender, and nutrition (38 in total), e.g. average daily intake in calories and cholesterol, were measured. Each subject was categorized according to body mass index (BMI) as normal (BMI ≤ 25) or overweight (BMI > 25). Two artificial neural network (ANN) based methods were designed and used towards the analysis of the available data. These corresponded to i) a multi-layer feed-forward ANN combined with a parameter decreasing method (PDM-ANN), and ii) a multi-layer feed-forward ANN trained by a hybrid method (GA-ANN) which combines genetic algorithms and the popular back-propagation training algorithm.
Resumo:
Objective To analyse the available evidence on cardiovascular safety of non-steroidal anti-inflammatory drugs. Design Network meta-analysis. Data sources Bibliographic databases, conference proceedings, study registers, the Food and Drug Administration website, reference lists of relevant articles, and reports citing relevant articles through the Science Citation Index (last update July 2009). Manufacturers of celecoxib and lumiracoxib provided additional data. Study selection All large scale randomised controlled trials comparing any non-steroidal anti-inflammatory drug with other non-steroidal anti-inflammatory drugs or placebo. Two investigators independently assessed eligibility. Data extraction The primary outcome was myocardial infarction. Secondary outcomes included stroke, death from cardiovascular disease, and death from any cause. Two investigators independently extracted data. Data synthesis 31 trials in 116 429 patients with more than 115 000 patient years of follow-up were included. Patients were allocated to naproxen, ibuprofen, diclofenac, celecoxib, etoricoxib, rofecoxib, lumiracoxib, or placebo. Compared with placebo, rofecoxib was associated with the highest risk of myocardial infarction (rate ratio 2.12, 95% credibility interval 1.26 to 3.56), followed by lumiracoxib (2.00, 0.71 to 6.21). Ibuprofen was associated with the highest risk of stroke (3.36, 1.00 to 11.6), followed by diclofenac (2.86, 1.09 to 8.36). Etoricoxib (4.07, 1.23 to 15.7) and diclofenac (3.98, 1.48 to 12.7) were associated with the highest risk of cardiovascular death. Conclusions Although uncertainty remains, little evidence exists to suggest that any of the investigated drugs are safe in cardiovascular terms. Naproxen seemed least harmful. Cardiovascular risk needs to be taken into account when prescribing any non-steroidal anti-inflammatory drug.
Resumo:
The relative safety of drug-eluting stents and bare-metal stents, especially with respect to stent thrombosis, continues to be debated. In view of the overall low frequency of stent thrombosis, large sample sizes are needed to accurately estimate treatment differences between stents. We compared the risk of thrombosis between bare-metal and drug-eluting stents.
Resumo:
Our society uses a large diversity of co-existing wired and wireless networks in order to satisfy its communication needs. A cooper- ation between these networks can benefit performance, service availabil- ity and deployment ease, and leads to the emergence of hybrid networks. This position paper focuses on a hybrid mobile-sensor network identify- ing potential advantages and challenges of its use and defining feasible applications. The main value of the paper, however, is in the proposed analysis approach to evaluate the performance at the mobile network side given the mixed mobile-sensor traffic. The approach combines packet- level analysis with modelling of flow-level behaviour and can be applied for the study of various application scenarios. In this paper we consider two applications with distinct traffic models namely multimedia traffic and best-effort traffic.
Resumo:
The Simulation Automation Framework for Experiments (SAFE) streamlines the de- sign and execution of experiments with the ns-3 network simulator. SAFE ensures that best practices are followed throughout the workflow a network simulation study, guaranteeing that results are both credible and reproducible by third parties. Data analysis is a crucial part of this workflow, where mistakes are often made. Even when appearing in highly regarded venues, scientific graphics in numerous network simulation publications fail to include graphic titles, units, legends, and confidence intervals. After studying the literature in network simulation methodology and in- formation graphics visualization, I developed a visualization component for SAFE to help users avoid these errors in their scientific workflow. The functionality of this new component includes support for interactive visualization through a web-based interface and for the generation of high-quality, static plots that can be included in publications. The overarching goal of my contribution is to help users create graphics that follow best practices in visualization and thereby succeed in conveying the right information about simulation results.
Resumo:
Whether the two drug-eluting stents approved by the US Food and Drug Administration-a sirolimus-eluting stent and a paclitaxel-eluting stent-are associated with increased risks of death, myocardial infarction, or stent thrombosis compared with bare-metal stents is uncertain. Our aim was to compare the safety and effectiveness of these stents.
Resumo:
Objective To compare the effectiveness and safety of three types of stents (sirolimus eluting, paclitaxel eluting, and bare metal) in people with and without diabetes mellitus. Design Collaborative network meta-analysis. Data sources Electronic databases (Medline, Embase, the Cochrane Central Register of Controlled Trials), relevant websites, reference lists, conference abstracts, reviews, book chapters, and proceedings of advisory panels for the US Food and Drug Administration. Manufacturers and trialists provided additional data. Review methods Network meta-analysis with a mixed treatment comparison method to combine direct within trial comparisons between stents with indirect evidence from other trials while maintaining randomisation. Overall mortality was the primary safety end point, target lesion revascularisation the effectiveness end point. Results 35 trials in 3852 people with diabetes and 10 947 people without diabetes contributed to the analyses. Inconsistency of the network was substantial for overall mortality in people with diabetes and seemed to be related to the duration of dual antiplatelet therapy (P value for interaction 0.02). Restricting the analysis to trials with a duration of dual antiplatelet therapy of six months or more, inconsistency was reduced considerably and hazard ratios for overall mortality were near one for all comparisons in people with diabetes: sirolimus eluting stents compared with bare metal stents 0.88 (95% credibility interval 0.55 to 1.30), paclitaxel eluting stents compared with bare metal stents 0.91 (0.60 to 1.38), and sirolimus eluting stents compared with paclitaxel eluting stents 0.95 (0.63 to 1.43). In people without diabetes, hazard ratios were unaffected by the restriction. Both drug eluting stents were associated with a decrease in revascularisation rates compared with bare metal stents in people both with and without diabetes. Conclusion In trials that specified a duration of dual antiplatelet therapy of six months or more after stent implantation, drug eluting stents seemed safe and effective in people both with and without diabetes.
Resumo:
The developmental processes and functions of an organism are controlled by the genes and the proteins that are derived from these genes. The identification of key genes and the reconstruction of gene networks can provide a model to help us understand the regulatory mechanisms for the initiation and progression of biological processes or functional abnormalities (e.g. diseases) in living organisms. In this dissertation, I have developed statistical methods to identify the genes and transcription factors (TFs) involved in biological processes, constructed their regulatory networks, and also evaluated some existing association methods to find robust methods for coexpression analyses. Two kinds of data sets were used for this work: genotype data and gene expression microarray data. On the basis of these data sets, this dissertation has two major parts, together forming six chapters. The first part deals with developing association methods for rare variants using genotype data (chapter 4 and 5). The second part deals with developing and/or evaluating statistical methods to identify genes and TFs involved in biological processes, and construction of their regulatory networks using gene expression data (chapter 2, 3, and 6). For the first part, I have developed two methods to find the groupwise association of rare variants with given diseases or traits. The first method is based on kernel machine learning and can be applied to both quantitative as well as qualitative traits. Simulation results showed that the proposed method has improved power over the existing weighted sum method (WS) in most settings. The second method uses multiple phenotypes to select a few top significant genes. It then finds the association of each gene with each phenotype while controlling the population stratification by adjusting the data for ancestry using principal components. This method was applied to GAW 17 data and was able to find several disease risk genes. For the second part, I have worked on three problems. First problem involved evaluation of eight gene association methods. A very comprehensive comparison of these methods with further analysis clearly demonstrates the distinct and common performance of these eight gene association methods. For the second problem, an algorithm named the bottom-up graphical Gaussian model was developed to identify the TFs that regulate pathway genes and reconstruct their hierarchical regulatory networks. This algorithm has produced very significant results and it is the first report to produce such hierarchical networks for these pathways. The third problem dealt with developing another algorithm called the top-down graphical Gaussian model that identifies the network governed by a specific TF. The network produced by the algorithm is proven to be of very high accuracy.
Resumo:
Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.
Resumo:
BACKGROUND Several treatment strategies are available for adults with advanced-stage Hodgkin's lymphoma, but studies assessing two alternative standards of care-increased dose bleomycin, etoposide, doxorubicin, cyclophosphamide, vincristine, procarbazine, and prednisone (BEACOPPescalated), and doxorubicin, bleomycin, vinblastine, and dacarbazine (ABVD)-were not powered to test differences in overall survival. To guide treatment decisions in this population of patients, we did a systematic review and network meta-analysis to identify the best initial treatment strategy. METHODS We searched the Cochrane Library, Medline, and conference proceedings for randomised controlled trials published between January, 1980, and June, 2013, that assessed overall survival in patients with advanced-stage Hodgkin's lymphoma given BEACOPPbaseline, BEACOPPescalated, BEACOPP variants, ABVD, cyclophosphamide (mechlorethamine), vincristine, procarbazine, and prednisone (C[M]OPP), hybrid or alternating chemotherapy regimens with ABVD as the backbone (eg, COPP/ABVD, MOPP/ABVD), or doxorubicin, vinblastine, mechlorethamine, vincristine, bleomycin, etoposide, and prednisone combined with radiation therapy (the Stanford V regimen). We assessed studies for eligibility, extracted data, and assessed their quality. We then pooled the data and used a Bayesian random-effects model to combine direct comparisons with indirect evidence. We also reconstructed individual patient survival data from published Kaplan-Meier curves and did standard random-effects Poisson regression. Results are reported relative to ABVD. The primary outcome was overall survival. FINDINGS We screened 2055 records and identified 75 papers covering 14 eligible trials that assessed 11 different regimens in 9993 patients, providing 59 651 patient-years of follow-up. 1189 patients died, and the median follow-up was 5·9 years (IQR 4·9-6·7). Included studies were of high methodological quality, and between-trial heterogeneity was negligible (τ(2)=0·01). Overall survival was highest in patients who received six cycles of BEACOPPescalated (HR 0·38, 95% credibility interval [CrI] 0·20-0·75). Compared with a 5 year survival of 88% for ABVD, the survival benefit for six cycles of BEACOPPescalated is 7% (95% CrI 3-10)-ie, a 5 year survival of 95%. Reconstructed individual survival data showed that, at 5 years, BEACOPPescalated has a 10% (95% CI 3-15) advantage over ABVD in overall survival. INTERPRETATION Six cycles of BEACOPPescalated significantly improves overall survival compared with ABVD and other regimens, and thus we recommend this treatment strategy as standard of care for patients with access to the appropriate supportive care.