938 resultados para Multivariate Linkage Analysis
Resumo:
The general purpose of this work is to describe and analyse the financing phenomenon of crowdfunding and to investigate the relations among crowdfunders, project creators and crowdfunding websites. More specifically, it also intends to describe the profile differences between major crowdfunding platforms, such as Kickstarter and Indiegogo. The findings are supported by literature, gathered from different scientific research papers. In the empirical part, data about Kickstarter and Indiegogo was collected from their websites and also complemented with further data from other statistical websites. For finding out specific information, such as satisfaction of entrepreneurs from both platforms, a satisfaction survey was applied among 200 entrepreneurs from different countries. To identify the profile of users of the Kickstarter and of the Indiegogo platforms, a multivariate analysis was performed, using a Hierarchical Clusters Analysis for each platform under study. Descriptive analysis was used for exploring information about popularity of platforms, average cost and the most popular area of projects, profile of users and future opportunities of platforms. To assess differences between groups, association between variables, and answering to the research hypothesis, an inferential analysis it was applied. The results showed that the Kickstarter and Indiegogo are one of the most popular crowdfunding platforms. Both of them have thousands of users and they are generally satisfied. Each of them uses individual approach for crowdfunders. Despite this, they both could benefit from further improving their services. Furthermore, according the results it was possible to observe that there is a direct and positive relationship between the money needed for the projects and the money collected from the investors for the projects, per platform.
Resumo:
Animal welfare issues have received much attention not only to supply farmed animal requirements, but also to ethical and cultural public concerns. Daily collected information, as well as the systematic follow-up of production stages, produces important statistical data for production assessment and control, as well as for improvement possibilities. In this scenario, this research study analyzed behavioral, production, and environmental data using Main Component Multivariable Analysis, which correlated observed behaviors, recorded using video cameras and electronic identification, with performance parameters of female broiler breeders. The aim was to start building a system to support decision-making in broiler breeder housing, based on bird behavioral parameters. Birds were housed in an environmental chamber, with three pens with different controlled environments. Bird sensitivity to environmental conditions were indicated by their behaviors, stressing the importance of behavioral observations for modern poultry management. A strong association between performance parameters and the behavior at the nest, suggesting that this behavior may be used to predict productivity. The behaviors of ruffling feathers, opening wings, preening, and at the drinker were negatively correlated with environmental temperature, suggesting that the increase of in the frequency of these behaviors indicate improvement of thermal welfare.
Resumo:
This paper applies two measures to assess spillovers across markets: the Diebold Yilmaz (2012) Spillover Index and the Hafner and Herwartz (2006) analysis of multivariate GARCH models using volatility impulse response analysis. We use two sets of data, daily realized volatility estimates taken from the Oxford Man RV library, running from the beginning of 2000 to October 2016, for the S&P500 and the FTSE, plus ten years of daily returns series for the New York Stock Exchange Index and the FTSE 100 index, from 3 January 2005 to 31 January 2015. Both data sets capture both the Global Financial Crisis (GFC) and the subsequent European Sovereign Debt Crisis (ESDC). The spillover index captures the transmission of volatility to and from markets, plus net spillovers. The key difference between the measures is that the spillover index captures an average of spillovers over a period, whilst volatility impulse responses (VIRF) have to be calibrated to conditional volatility estimated at a particular point in time. The VIRF provide information about the impact of independent shocks on volatility. In the latter analysis, we explore the impact of three different shocks, the onset of the GFC, which we date as 9 August 2007 (GFC1). It took a year for the financial crisis to come to a head, but it did so on 15 September 2008, (GFC2). The third shock is 9 May 2010. Our modelling includes leverage and asymmetric effects undertaken in the context of a multivariate GARCH model, which are then analysed using both BEKK and diagonal BEKK (DBEKK) models. A key result is that the impact of negative shocks is larger, in terms of the effects on variances and covariances, but shorter in duration, in this case a difference between three and six months.
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
Neuroimaging research involves analyses of huge amounts of biological data that might or might not be related with cognition. This relationship is usually approached using univariate methods, and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the probability of false negatives is also increased. Multivariate frameworks have been proposed for helping to alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous analysis of biological and cognitive data, namely, structural connections among 82 brain regions and several latent factors estimating cognitive performance. We tested whether cognitive differences predict distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections among regions, the 36 edges better predicted by the individuals' cognitive scores were selected. Cognitive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity patterns. The selected edges connect regions distributed across the entire brain and the network defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control, (b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This multivariate study suggests that one widespread, but limited number, of regions in the human brain, supports high-level cognitive ability differences. Hum Brain Mapp, 2016. © 2016 Wiley Periodicals, Inc.
Resumo:
Min/max autocorrelation factor analysis (MAFA) and dynamic factor analysis (DFA) are complementary techniques for analysing short (> 15-25 y), non-stationary, multivariate data sets. We illustrate the two techniques using catch rate (cpue) time-series (1982-2001) for 17 species caught during trawl surveys off Mauritania, with the NAO index, an upwelling index, sea surface temperature, and an index of fishing effort as explanatory variables. Both techniques gave coherent results, the most important common trend being a decrease in cpue during the latter half of the time-series, and the next important being an increase during the first half. A DFA model with SST and UPW as explanatory variables and two common trends gave good fits to most of the cpue time-series. (c) 2004 International Council for the Exploration of the Sea. Published by Elsevier Ltd. All rights reserved.
Resumo:
Taxonomic distinction to species level of deep water sharks is complex and often impossible to achieve during fisheries-related studies. The species of the genus Etmopterus are particularly difficult to identify, so they often appear without species assignation as Etmopetrus sp. or spp. in studies, even those focusing on elasmobranchs. During this work, the morphometric traits of two species of Etmopterus, E. spinax and E. pusillus were studied using 27 different morphological measurements, relatively easy to obtain even in the field. These measurements were processed with multivariate analysis in order to find out the most important ones likely to separate the two species. Sexual dimorphism was also assessed using the same techniques, and it was found that it does not occur in these species. The two Etmopterus species presented in this study share the same habitats in the overlapping ranges of distribution and are caught together on the outer shelves and slopes of the north-eastern Atlantic.
Resumo:
info:eu-repo/semantics/publishedVersion
Resumo:
2016
Resumo:
In a study of the vanadyl (VO2þ)-humic acids system, the residual vanadyl ion suppressed fluorescence and specific electron paramagnetic resonance (EPR) and NMR signals. In the case of NMR, the proton rotating frame relaxation times (T1qH) indicate that this suppression is due to an inefficient H-C cross polarization, which is a consequence of a shortening of T1qH. Principal components analysis (PCA) facilitated the isolation of the effect of the VO2þ ion and indicated that the organic free radical signal was due to at least two paramagnetic centres and that the VO2þ ion preferentially suppressed the species whose electronic density is delocalized over O atoms (greater g-factor). additionally, the newly obtained variables (principal components ? PC) indicated that, as the result of the more intense tillage a relative increase occurred in the accumulation of: (i) recalcitrant structures; (ii) lignin and long-chain alkyl structures; and (iii) organic free radicals with smaller g-factors.
Resumo:
2016
Resumo:
Il quark top è una delle particelle fondamentali del Modello Standard, ed è osservato a LHC nelle collisioni a più elevata energia. In particolare, la coppia top-antitop (tt̄) è prodotta tramite interazione forte da eventi gluone-gluone (gg) oppure collisioni di quark e antiquark (qq̄). I diversi meccanismi di produzione portano ad avere coppie con proprietà diverse: un esempio è lo stato di spin di tt̄, che vicino alla soglia di produzione è maggiormente correlato nel caso di un evento gg. Uno studio che voglia misurare l’entità di tali correlazioni risulta quindi essere significativamente facilitato da un metodo di discriminazione delle coppie risultanti sulla base del loro canale di produzione. Il lavoro qui presentato ha quindi lo scopo di ottenere uno strumento per effettuare tale differenziazione, attraverso l’uso di tecniche di analisi multivariata. Tali metodi sono spesso applicati per separare un segnale da un fondo che ostacola l’analisi, in questo caso rispettivamente gli eventi gg e qq̄. Si dice che si ha a che fare con un problema di classificazione. Si è quindi studiata la prestazione di diversi algoritmi di analisi, prendendo in esame le distribuzioni di numerose variabili associate al processo di produzione di coppie tt̄. Si è poi selezionato il migliore in base all’efficienza di riconoscimento degli eventi di segnale e alla reiezione degli eventi di fondo. Per questo elaborato l’algoritmo più performante è il Boosted Decision Trees, che permette di ottenere da un campione con purezza iniziale 0.81 una purezza finale di 0.92, al costo di un’efficienza ridotta a 0.74.
Resumo:
Current guidelines have advised against the performance of (131)I-iodide diagnostic whole body scintigraphy (dxWBS) to minimize the occurrence of stunning, and to guarantee the efficiency of radioiodine therapy (RIT). The aim of the study was to evaluate the impact of stunning on the efficacy of RIT and disease outcome. This retrospective analysis included 208 patients with differentiated thyroid cancer managed according to a same protocol and followed up for 12-159 months (mean 30 ± 69 months). Patients received RIT in doses ranging from 3,700 to 11,100 MBq (100 mCi to 300 mCi). Post-RIT-whole body scintigraphy images were performed 10 days after RIT in all patients. In addition, images were also performed 24-48 hours after therapy in 22 patients. Outcome was classified as no evidence of disease (NED), stable disease (SD) and progressive disease (PD). Thyroid stunning occurred in 40 patients (19.2%), including 26 patients with NED and 14 patients with SD. A multivariate analysis showed no association between disease outcome and the occurrence of stunning (p = 0.3476). The efficacy of RIT and disease outcome do not seem to be related to thyroid stunning.
Resumo:
To investigate the degree of T2 relaxometry changes over time in groups of patients with familial mesial temporal lobe epilepsy (FMTLE) and asymptomatic relatives. We conducted both cross-sectional and longitudinal analyses of T2 relaxometry with Aftervoxel, an in-house software for medical image visualization. The cross-sectional study included 35 subjects (26 with FMTLE and 9 asymptomatic relatives) and 40 controls; the longitudinal study was composed of 30 subjects (21 with FMTLE and 9 asymptomatic relatives; the mean time interval of MRIs was 4.4 ± 1.5 years) and 16 controls. To increase the size of our groups of patients and relatives, we combined data acquired in 2 scanners (2T and 3T) and obtained z-scores using their respective controls. General linear model on SPSS21® was used for statistical analysis. In the cross-sectional analysis, elevated T2 relaxometry was identified for subjects with seizures and intermediate values for asymptomatic relatives compared to controls. Subjects with MRI signs of hippocampal sclerosis presented elevated T2 relaxometry in the ipsilateral hippocampus, while patients and asymptomatic relatives with normal MRI presented elevated T2 values in the right hippocampus. The longitudinal analysis revealed a significant increase in T2 relaxometry for the ipsilateral hippocampus exclusively in patients with seizures. The longitudinal increase of T2 signal in patients with seizures suggests the existence of an interaction between ongoing seizures and the underlying pathology, causing progressive damage to the hippocampus. The identification of elevated T2 relaxometry in asymptomatic relatives and in patients with normal MRI suggests that genetic factors may be involved in the development of some mild hippocampal abnormalities in FMTLE.