982 resultados para Micro-mechanical oscillators


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). Methods: A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Results: Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. Conclusions: This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this work was to develop a low-cost circuit for real-time analog computation of the respiratory mechanical impedance in sleep studies. The practical performance of the circuit was tested in six patients with obstructive sleep apnea. The impedance signal provided by the analog circuit was compared with the impedance calculated simultaneously with a conventional computerized system. We concluded that the low-cost analog circuit developed could be a useful tool for facilitating the real-time assessment of airway obstruction in routine sleep studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large phasic variations of respiratory mechanical impedance (Zrs) have been observed during induced expiratory flow limitation (EFL) (M. Vassiliou, R. Peslin, C. Saunier, and C. Duvivier. Eur. Respir. J. 9: 779-786, 1996). To clarify the meaning of Zrs during EFL, we have measured from 5 to 30 Hz the input impedance (Zin) of mechanical analogues of the respiratory system, including flow-limiting elements (FLE) made of easily collapsible rubber tubing. The pressures upstream (Pus) and downstream (Pds) from the FLE were controlled and systematically varied. Maximal flow (Vmax) increased linearly with Pus, was close to the value predicted from wave-speed theory, and was obtained for Pus-Pds of 4-6 hPa. The real part of Zin started increasing abruptly with flow (V) >85%Vmax and either further increased or suddenly decreased in the vicinity of V¿max. The imaginary part of Zin decreased markedly and suddenly above 95%Vmax. Similar variations of Zin during EFL were seen with an analogue that mimicked the changes of airway transmural pressure during breathing. After pressure andV measurements upstream and downstream from the FLE were combined, the latter was analyzed in terms of a serial (Zs) and a shunt (Zp) compartment. Zs was consistent with a large resistance and inertance, and Zp with a mainly elastic element having an elastance close to that of the tube walls. We conclude that Zrs data during EFL mainly reflect the properties of the FLE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the rheological properties of living human airway smooth muscle cells in culture and monitored the changes in rheological properties induced by exogenous stimuli. We oscillated small magnetic microbeads bound specifically to integrin receptors and computed the storage modulus (G') and loss modulus (G") from the applied torque and the resulting rotational motion of the beads as determined from their remanent magnetic field. Under baseline conditions, G' increased weakly with frequency, whereas G" was independent of the frequency. The cell was predominantly elastic, with the ratio of G" to G' (defined as eta) being ~0.35 at all frequencies. G' and G" increased together after contractile activation and decreased together after deactivation, whereas eta remained unaltered in each case. Thus elastic and dissipative stresses were coupled during changes in contractile activation. G' and G" decreased with disruption of the actin fibers by cytochalasin D, but eta increased. These results imply that the mechanisms for frictional energy loss and elastic energy storage in the living cell are coupled and reside within the cytoskeleton.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

En el presente trabajo se describe el método de la determinación de la dureza efectuando las mediciones a escala microscópica. Se establece la relación entre la escala de dureza de Mohs y las unidades Vickers de dureza (VHN). Se describen también los cuatro tipos de aparatos microscópicos que pueden ser utilizados en dicho método.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stress in local isolation structures is studied by micro‐Raman spectroscopy. The results are correlated with predictions of an analytical model for the stress distribution and with cross‐sectional transmission electron microscopy observations. The measurements are performed on structures on which the Si3N4 oxidation mask is still present. The influence of the pitch of the periodic local isolation pattern, consisting of parallel lines, the thickness of the mask, and the length of the bird"s beak on the stress distribution are studied. It is found that compressive stress is present in the Si substrate under the center of the oxidation mask lines, with a magnitude dependent on the width of the lines. Large tensile stress is concentrated under the bird"s beak and is found to increase with decreasing length of the bird"s beak and with increasing thickness of the Si3N4 film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work presents an alternative to generate continuous phase shift of sinusoidal signals based on the use of super harmonic injection locked oscillators (ILO). The proposed circuit is a second harmonic ILO with varactor diodes as tuning elements. In the locking state, by changing the varactor bias, a phase shift instead of a frequency shift is observed at the oscillator output. By combining two of these circuits, relative phases up to 90 could be achieved. Two prototypes of the circuit have been implemented and tested, a hybrid version working in the range of 200-300 MHz and a multichip module (MCM) version covering the 900¿1000 MHz band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method and circuit for the conversion of binary phase-shift keying (BPSK) signals into amplitude shift keying signals. The basic principles of the conversion method are the superharmonic injection and locking of oscillator circuits, and interference phenomena. The first one is used to synchronize the oscillators, while the second is used to generate an amplitude interference pattern that reproduces the original phase modulation. When combined with an envelope detector, the proposed converter circuit allows the coherent demodulation of BPSK signals without need of any explicit carrier recovery system. The time response of the converter circuit to phase changes of the input signal, as well as the conversion limits, are discussed in detail.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper demonstrates the feasibility of a new circuit for the conversion of binary phase-shift keying signals into amplitude-shift keying signals. In its simplest form, the converter circuit is composed by a power divider, a couple of second harmonic injection-locked oscillators, and a power combiner. The operation of the converter circuit relies on the frequency synchronization of both oscillators and the generation of an interference pattern by combining their outputs, which reproduces the original phase modulation. Two prototypes of the converter have been implemented. The first one is a hybrid version working in the 400-530-MHz frequency range. The second one has been implemented using multichip-module technology, and is intended to work in the 1.8-2.2-GHz frequency range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to the local measurement of residual stress in microstructures is described in this paper. The presented technique takes advantage of the combined milling-imaging features of a focused ion beam (FIB) equipment to scale down the widely known hole drilling method. This method consists of drilling a small hole in a solid with inherent residual stresses and measuring the strains/displacements caused by the local stress release, that takes place around the hole. In the presented case, the displacements caused by the milling are determined by applying digital image correlation (DIC) techniques to high resolution micrographs taken before and after the milling process. The residual stress value is then obtained by fitting the measured displacements to the analytical solution of the displacement fields. The feasibility of this approach has been demonstrated on a micromachined silicon nitride membrane showing that this method has high potential for applications in the field of mechanical characterization of micro/nanoelectromechanical systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral inflammation induces persistent central sensitization characterized by mechanical allodynia and heat hyperalgesia that are mediated by distinct mechanisms. Compared to well-demonstrated mechanisms of heat hyperalgesia, mechanisms underlying the development of mechanical allodynia and contralateral pain are incompletely known. In this study, we investigated the distinct role of spinal JNK in heat hyperalgesia, mechanical allodynia, and contralateral pain in an inflammatory pain model. Intraplantar injection of complete Freund's adjuvant (CFA) induced bilateral mechanical allodynia but unilateral heat hyperalgesia. CFA also induced a bilateral activation (phosphorylation) of JNK in the spinal cord, and the phospho JNK1 (pJNK1) levels were much higher than that of pJNK2. Notably, both pJNK and JNK1 were expressed in GFAP-positive astrocytes. Intrathecal infusion of a selective peptide inhibitor of JNK, D-JNKI-1, starting before inflammation via an osmotic pump, reduced CFA-induced mechanical allodynia in the maintenance phase but had no effect on CFA-induced heat hyperalgesia. A bolus intrathecal injection of D-JNKI-1 or SP600126, a small molecule inhibitor of JNK also reversed mechanical allodynia bilaterally. In contrast, peripheral (intraplantar) administration of D-JNKI-1 reduced the induction of CFA-induced heat hyperalgesia but did not change mechanical allodynia. Finally, CFA-induced bilateral mechanical allodynia was attenuated in mice lacking JNK1 but not JNK2. Taken together, our data suggest that spinal JNK, in particular JNK1 plays an important role in the maintenance of persistent inflammatory pain. Our findings also reveal a unique role of JNK1 and astrocyte network in regulating tactile allodynia and contralateral pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drosophila melanogaster is a model organism instrumental for numerous biological studies. The compound eye of this insect consists of some eight hundred individual ommatidia or facets, ca. 15 µm in cross-section. Each ommatidium contains eighteen cells including four cone cells secreting the lens material (cornea). High-resolution imaging of the cornea of different insects has demonstrated that each lens is covered by the nipple arrays--small outgrowths of ca. 200 nm in diameter. Here we for the first time utilize atomic force microscopy (AFM) to investigate nipple arrays of the Drosophila lens, achieving an unprecedented visualization of the architecture of these nanostructures. We find by Fourier analysis that the nipple arrays of Drosophila are disordered, and that the seemingly ordered appearance is a consequence of dense packing of the nipples. In contrast, Fourier analysis confirms the visibly ordered nature of the eye microstructures--the individual lenses. This is different in the frizzled mutants of Drosophila, where both Fourier analysis and optical imaging detect disorder in lens packing. AFM reveals intercalations of the lens material between individual lenses in frizzled mutants, providing explanation for this disorder. In contrast, nanostructures of the mutant lens show the same organization as in wild-type flies. Thus, frizzled mutants display abnormal organization of the corneal micro-, but not nano-structures. At the same time, nipples of the mutant flies are shorter than those of the wild-type. We also analyze corneal surface of glossy-appearing eyes overexpressing Wingless--the lipoprotein ligand of Frizzled receptors, and find the catastrophic aberration in nipple arrays, providing experimental evidence in favor of the major anti-reflective function of these insect eye nanostructures. The combination of the easily tractable genetic model organism and robust AFM analysis represents a novel methodology to analyze development and architecture of these surface formations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The determination of the characteristics of micro-organisms in clinical specimens is essential for the rapid diagnosis and treatment of infections. A thorough investigation of the nanoscale properties of bacteria can prove to be a fundamental tool. Indeed, in the latest years, the importance of high resolution analysis of the properties of microbial cell surfaces has been increasingly recognized. Among the techniques available to observe at high resolution specific properties of microscopic samples, the Atomic Force Microscope (AFM) is the most widely used instrument capable to perform morphological and mechanical characterizations of living biological systems. Indeed, AFM can routinely study single cells in physiological conditions and can determine their mechanical properties with a nanometric resolution. Such analyses, coupled with high resolution investigation of their morphological properties, are increasingly used to characterize the state of single cells. In this work, we exploit the capabilities and peculiarities of AFM to analyze the mechanical properties of Escherichia coli in order to evidence with a high spatial resolution the mechanical properties of its structure. In particular, we will show that the bacterial membrane is not mechanically uniform, but contains stiffer areas. The force volume investigations presented in this work evidence for the first time the presence and dynamics of such structures. Such information is also coupled with a novel stiffness tomography technique, suggesting the presence of stiffer structures present underneath the membrane layer that could be associated with bacterial nucleoids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Intensive agriculture, in which detrimental farming practices lessen food abundance and/or reduce food accessibility for many animal species, has led to a widespread collapse of farmland biodiversity. Vineyards in central and southern Europe are intensively cultivated; though they may still harbour several rare plant and animal species, they remain little studied. Over the past decades, there has been a considerable reduction in the application of insecticides in wine production, with a progressive shift to biological control (integrated production) and, to a lesser extent, organic production. Spraying of herbicides has also diminished, which has led to more vegetation cover on the ground, although most vineyards remain bare, especially in southern Europe. The effects of these potentially positive environmental trends upon biodiversity remain mostly unknown as regards vertebrates. The Woodlark (Lullula arborea) is an endangered, short-distance migratory bird that forages and breeds on the ground. In southern Switzerland (Valais), it occurs mostly in vineyards. We used radiotracking and mixed effects logistic regression models to assess Woodlark response to modern vineyard farming practices, study factors driving foraging micro-habitat selection, and determine optimal habitat profile to inform management. The presence of ground vegetation cover was the main factor dictating the selection of foraging locations, with an optimum around 55% at the foraging patch scale. These conditions are met in integrated production vineyards, but only when grass is tolerated on part of the ground surface, which is the case on ca. 5% of the total Valais vineyard area. In contrast, conventionally managed vineyards covering a parts per thousand yen95% of the vineyard area are too bare because of systematic application of herbicides all over the ground, whilst the rare organic vineyards usually have a too-dense sward. The optimal mosaic with ca. 50% ground vegetation cover is currently achieved in integrated production vineyards where herbicide is applied every second row. In organic production, ca. 50% ground vegetation cover should be promoted, which requires regular mechanical removal of ground vegetation. These measures are likely to benefit general biodiversity in vineyards.