930 resultados para Macrophages.
Resumo:
The potential therapeutic value of cell-based therapy with mesenchymal stem cells (MSC) has been reported in mouse models of polymicrobial peritoneal sepsis. However, the mechanisms responsible for the beneficial effects of MSC have not been well defined. Therefore, we tested the therapeutic effect of intravenous bone marrow-derived human MSC in peritoneal sepsis induced by gram-negative bacteria. At 48 h, survival was significantly increased in mice treated with intravenous MSC compared with control mice treated with intravenous fibroblasts (3T3) or intravenous PBS. There were no significant differences in the levels of TNF-a, macrophage inflammatory protein 2, or IL-10 in the plasma. However, there was a marked reduction in the number of bacterial colony-forming units of Pseudomonas aeruginosa in the blood of MSC-treated mice compared with the 3T3 and PBS control groups. In addition, phagocytic activity was increased in blood monocytes isolated from mice treated with MSC compared with the 3T3 and PBS groups. Furthermore, levels of C5a anaphylotoxin were elevated in the blood of mice treated with MSC, a finding that was associated with upregulation of the phagocytosis receptor CD11b on monocytes. The phagocytic activity of neutrophils was not different among the groups. There was also an increase in alternately activated monocytes/macrophages (CD163- and CD206-positive) in the spleen of the MSC-treated mice compared with the two controls. Thus intravenous MSC increased survival from gram-negative peritoneal sepsis, in part by a monocyte-dependent increase in bacterial phagocytosis.
Resumo:
Phagocytosis is a key process of the immune system. The human pathogen Klebsiella pneumoniae is a well known example of a pathogen highly resistant to phagocytosis. A wealth of evidence demonstrates that the capsule polysaccharide (CPS) plays a crucial role in resistance to phagocytosis. The amoeba Dictyostelium discoideum shares with mammalian macrophages the ability to phagocytose and kill bacteria. The fact that K. pneumoniae is ubiquitous in nature and, therefore, should avoid predation by amoebae, poses the question whether K. pneumoniae employs similar means to counteract amoebae and mammalian phagocytes. Here we developed an assay to evaluate K. pneumoniae-D. discoideum interaction. The richness of the growth medium affected the threshold at which the cps mutant was permissive for Dictyostelium and only at lower nutrient concentrations the cps mutant was susceptible to predation by amoebae. Given the critical role of bacterial surface elements on host-pathogen interactions, we explored the possible contribution of the lipopolysaccharide (LPS) and outer membrane proteins (OMPs) to combat phagoyctosis by D. discoideum. We uncover that, in addition to the CPS, the LPS O-polysaccharide and the first core sugar participate in Klebsiella resistance to predation by D. discoideum. K. pneumoniae LPS lipid A decorations are also necessary to avoid predation by amoebae although PagP-dependent palmitoylation plays a more important role than the lipid A modification with aminoarabinose. Mutants lacking OMPs OmpA or OmpK36 were also permissive for D. discoideium growth. Except the LPS O-polysaccharide mutants, all mutants were more susceptible to phagocytosis by mouse alveolar macrophages. Finally, we found a correlation between virulence, using the pneumonia mouse model, and resistance to phagocytosis. Altogether, this work reveals novel K. pneumoniae determinants involved in resistance to phagocytosis and supports the notion that Dictyostelium amoebae might be useful as host model to measure K. pneumoniae virulence and not only phagocytosis. © 2013 March et al.
Resumo:
An experimental oral pig model was used to assess the pathogenic and immunogenic potential of Yersinia enterocolitica serotype O:8 wild-type strain 8081-L2 and its lipopolysaccharide (LPS) mutant derivatives: a spontaneous rough mutant 8081-R2, strain 8081-DeltawzzGB expressing O-antigen with uncontrolled chain lengths, and strain 8081-wbcEGB expressing semirough LPS with only one O-unit. Microbiological and immunological parameters of the infected pigs were followed from day 7 to 60 postinfection. The wild-type and all LPS mutant strains persisted in the lymphoid tissue of tonsils and small intestines, causing asymptomatic infection without any pathological changes. Although the pig is known as a reservoir of Yersiniae, a precise analysis of pathogenic and immunogenic parameters based on different in vitro tests (hematological response, killing ability of leukocytes and blood sera, antibody response, hydrogen peroxide production by macrophages, classical and alternative pathways of complement activation), revealed significant attenuation in the pathogenicity of the LPS mutant strains but not the loss of immunogenic potential. In comparison with the other strains, strain 8081-DeltawzzGB demonstrated more continuous leucocytosis with monocytosis, higher invasive potential, significant activation of hydrogen peroxide production by macrophages and an effective immunoglobulin G immune response accompanied by relevant histological immunomorphological rearrangements.
Resumo:
Aim: To evaluate the role of macrophages in the development of posterior capsule opacification (PCO). Methods: For this purpose, an extracapsular lens extraction was performed in 18 consecutive Sprague-Dawley rats. Animals were treated with liposomal clodronate (Cl MDP-lip-treated group, n = 10) or phosphate-buffered saline (PBS) (control group, n = 8) 1 day preoperatively and on the first day postoperatively, and sacrificed 3 days postoperatively. Masked clinical, light microscopy and immunohistochemistry studies were conducted. The Fisher exact test and randomisation test were used to assess statistically differences between groups. Results: A statistically significant reduction in the number of macrophages (ED1+, ED7+, ED8+) was found in the Cl MDP-lip-treated group compared with the PBS-lip-treated group (p = 0.048, p = 0.004, p = 0.027, respectively). There were no statistically significant differences with regards to the presence/absence of central opacification (p = 0.29) and capsular wrinkling (p = 0.21) as detected clinically between groups. Similarly, a qualitative evaluation of the degree of PCO with regards to lens epithelial cell (LEC) proliferation, capsular wrinkling and Soemmerring ring formation showed no statistically significance between groups (p = 0.27, p = 0.061, p = 1.0, respectively). However, a statistically significant reduction in the number of lens epithelial cells (LEC) counted in the centre of the posterior capsule was found in the Cl MDP-lip- treated group (p = 0.009). Conclusion: Depletion of macrophages was accompanied by a reduction in LEC in the centre of the posterior capsule in rodents.
Resumo:
Objective: To present a new model of posterior capsule opacification (PCO) in mice. Methods: An extracapsular lens extraction was performed in 28 consecutive mice. Animals were humanely killed 0 and 24 hours and 3 and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. Results: In 20 animals (71%), the eye appeared well healed before death. In 8 animals (29%), postoperative complications were noted. All animals developed PCO 2 weeks after surgery. Immediately after extracapsular lens extraction, lens epithelial cells were present in the inner surface of the anterior capsule and at the lens bow. At 24 hours, lens epithelial cells started to migrate toward the center of the posterior capsule. At 3 days, multilayered lens epithelial cells throughout the lens capsule and capsular wrinkling were apparent. Lens fibers and Soemmerring ring formation were observed 14 days after surgery. CD45 and CD11b macrophages were found in greater numbers 24 hours and 3 days after surgery (CD45 , P = .04 and P <.001, respectively; and CD11b , P = .01 and P = .004, respectively). The number of CD45 cells remained statistically significantly higher (P = .04) 14 days after surgery. Conclusion: In mice, PCO occurs following extracapsular lens extraction and is associated with low-grade but significant macrophage response. Clinical Relevance: The use of genetically modified mice to evaluate the pathogenic mechanisms of PCO and search for new therapeutic modalities to prevent or treat PCO is now possible.
Resumo:
PURPOSE. To describe a new model of posterior capsule opacification (PCO) in rodents METHODS. An extracapsular lens extraction (ECLE), by continuous curvilinear capsulorrhexis and hydrodissection, was performed in 42 consecutive Brown Norway rats. Animals were killed at 0, 6, and 24 hours and 3, 7, and 14 days after surgery. Eyes were enucleated and processed for light microscopy and immunohistochemistry. RESULTS. In 34 (81%) of the animals the operated eye appeared well healed before death, with a clear cornea and a well-formed anterior chamber. In eight (19%) there was no view of anterior segment structures because of hyphema, fibrin, or corneal opacification. PCO was clinically evident 3 days after ECLE and was present in all animals at 2 weeks. Immediately after ECLE, lens epithelial cells (LECs) were present in the inner surface of the anterior capsule and lens bow. Twenty-four hours after surgery, LECs started to migrate toward the center of the posterior capsule. At 3 days, multilayered LECs, some spindle shaped, were present throughout the lens capsule. Capsular wrinkling was apparent. Lens fibers and Soemmering's ring were observed in all animals 14 days after surgery, indicating some degree of cellular differentiation. Activated macrophages were present in greater numbers at 3 and 14 days after surgery (P <0.05), when proliferation and migration of LECs appeared to be greatest, and lens fiber differentiation was evident, respectively. CONCLUSIONS. In rodents PCO occurs after ECLE and is associated with low-grade inflammation, mostly of mononuclear macrophages. Although no intraocular lens implantation was performed, this model appears to be valuable for studying the sequence of events that leads to PCO after cataract surgery and the extracellular matrix cues that promote lens fiber differentiation.
Resumo:
Purpose: The authors present the unique clinical features of cavitary uveal melanoma. Design: Retrospective chart review. Participants: Eight patients with cavitary uveal melanoma. Main Outcome Measures: The clinical, ultrasonographic, and histopathologic features of eight patients with cavitary melanoma of the ciliary body were studied. Results: In all eyes there was a brown ciliary body mass that blocked transmission of light on trans-scleral transillumination. Ocular ultrasonography revealed a large, single hollow cavity (unilocular 'pseudocyst') in five cases and multiple hollow cavities (multilocular 'pseudocyst') in three cases. The cavity occupied a mean of 55% of the entire mass thickness (range, 31%-79%). In five cases, a basal uveal mass was noted on ultrasonography. Four patients underwent tumor resection; one had enucleation, and three had 1251 radioactive plaque treatment. In the five cases confirmed histopathologically, the cavitation was empty, contained erythrocytes, serous fluid, and/or pigment-laden macrophages. In no case was the cavity lined by necrotic tumor, endothelial cells, or epithelial cells. Conclusion: Ciliary body melanoma can develop an intralesional cavity resembling an intraocular cyst. The presence of a solid mass at the base and a thick wall surrounding the cavity can assist in the differentiation of cavitary melanoma from benign cyst.
Resumo:
Background/aims - Epiretinal and retrolental proliferation may occur during prolonged use of the novel tamponade agent perfluorohexyloctane (F H ). This study aims to determine whether there is any histological evidence that F H has a role in the formation of these membranes. Methods - Eight epiretinal membranes and three opaque posterior lens capsules were excised from patients in whom F H had been used as a long term retinal tamponade agent. The membranes and capsules were examined employing light microscopic methods, including immunohistochemistry. Results - The epiretinal membranes showed histological features typical of proliferative vitreoretinopathy (PVR) epiretinal membranes, but they also exhibited a dense macrophagic infiltration. In addition, three of the membranes contained multinucleated cells. Macrophages represented up to 30% of the cells present and appeared to contain large intracytoplasmic vacuoles. Similar cells were seen on the back of the posterior lens capsule in one specimen and all three capsules had posterior migration of lens epithelium. Conclusion - The pathological findings are not simply those of PVR. The macrophage infiltration suggests that there may be a biological reaction to F H which could reflect its surmised propensity to emulsify. Further investigations concerning the cellular response to this promising tamponade agent are warranted.
Resumo:
Recent murine studies have demonstrated that tumour-associated macrophages in the tumour microenvironment are a key source of the pro-tumourigenic cysteine protease, cathepsin S. We now show in a syngeneic colorectal carcinoma murine model that both tumour and tumour-associated cells contribute cathepsin S to promote neovascularisation and tumour growth. Cathepsin S depleted and control colorectal MC38 tumour cell lines were propagated in both wild type C57Bl/6 and cathepsin S null mice to provide stratified depletion of the protease from either the tumour, tumour-associated host cells, or both. Parallel analysis of these conditions showed that deletion of cathepsin S inhibited tumour growth and development, and revealed a clear contribution of both tumour and tumour-associated cell derived cathepsin S. The most significant impact on tumour development was obtained when the protease was depleted from both sources. Further characterisation revealed that the loss of cathepsin S led to impaired tumour vascularisation, which was complemented by a reduction in proliferation and increased apoptosis, consistent with reduced tumour growth. Analysis of cell types showed that in addition to the tumour cells, tumour-associated macrophages and endothelial cells can produce cathepsin S within the microenvironment. Taken together, these findings clearly highlight a manner by which tumour-associated cells can positively contribute to developing tumours and highlight cathepsin S as a therapeutic target in cancer.
Resumo:
Previous studies have shown that CCL2/CX3CR1 deficient mice on C57BL/6N background (with rd8 mutation) have an early onset (6 weeks) of spontaneous retinal degeneration. In this study, we generated CCL2(-/-)CX3CR1(GFP/GFP) mice on the C57BL/6J background. Retinal degeneration was not detected in CCL2(-/-)CX3CR1(GFP/GFP) mice younger than 6 months. Patches of whitish/yellowish fundus lesions were observed in 17~60% of 12-month, and 30~100% of 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice. Fluorescein angiography revealed no choroidal neovascularisation in these mice. Patches of retinal pigment epithelium (RPE) and photoreceptor damage were detected in 30% and 50% of 12- and 18-month CCL2(-/-)CX3CR1(GFP/GFP) mice respectively, but not in wild-type mice. All CCL2(-/-)CX3CR1(GFP/GFP) mice exposed to extra-light (~800lux, 6 h/day, 6 months) developed patches of retinal atrophy, and only 20-25% of WT mice which underwent the same light treatment developed atrophic lesions. In addition, synaptophysin expression was detected in the outer nucler layer (ONL) of area related to photoreceptor loss in CCL2(-/-)CX3CR1(GFP/GFP) mice. Markedly increased rhodopsin but reduced cone arrestin expression was observed in retinal outer layers in aged CCL2(-/-)CX3CR1(GFP/GFP) mice. GABA expression was reduced in the inner retina of aged CCL2(-/-)CX3CR1(GFP/GFP) mice. Significantly increased Müller glial and microglial activation was observed in CCL2(-/-)CX3CR1(GFP/GFP) mice compared to age-matched WT mice. Macrophages from CCL2(-/-)CX3CR1(GFP/GFP) mice were less phagocytic, but expressed higher levels of iNOS, IL-1ß, IL-12 and TNF-a under hypoxia conditions. Our results suggest that the deletions of CCL2 and CX3CR1 predispose mice to age- and light-mediated retinal damage. The CCL2/CX3CR1 deficient mouse may thus serve as a model for age-related atrophic degeneration of the RPE, including the dry type of macular degeneration, geographic atrophy.
Resumo:
PURPOSE: To describe a case with bullous keratopathy and anterior segment inflammation associated with heavy liquids. DESIGN: Observational case report. METHODS: Review of clinical and histopathologic changes. RESULTS: A 65-year-old patient underwent a pars plana vitrectomy for a rhegmatogenous retinal detachment. Perfluorodecalin was used as a temporary retinal tamponade. After surgery, bubbles of heavy liquid were noted in the anterior chamber. Fifteen months later, severe corneal edema developed, associated with corneal vascularization and keratic precipitates. Removal of heavy liquid through a paracentesis was attempted but the cornea remained edematous, and a penetrating keratoplasty was performed. In the histopathologic examination inflammatory changes from retention of perfluorodecalin were observed. There was a decompensated cornea with florid bullous keratopathy, inflammatory infiltration with vascularization, and deposition of perfluorodecalin within keratocytes and perivascular macrophages. CONCLUSION: Presence of heavy liquids in the anterior chamber may be associated with an intense inflammatory response and corneal decompensation. © 2005 by Elsevier Inc. All rights reserved.
Resumo:
The liver fluke, Fasciola hepatica, causes fascioliasis in domestic animals (sheep, cattle), a global disease that is also an important infection of humans. As soon as the parasite invades the gut wall its interaction with various host immune cells (e.g. dendritic cells, macrophages and mast cells) is complex. The parasite secretes a myriad of molecules that direct the immune response towards a favourable non-protective Th2-mediate/regulatory environment. These immunomodulatory molecules, such as cathepsin L peptidase (FhCL1), are under development as the first generation of fluke vaccines. However, this peptidase and other molecules, such as peroxiredoxin (FhPrx) and helminth defence molecule (FhHDM-1), exhibit various immunomodulatory properties that could be harnessed to help treat immune-related conditions in humans and animals.
Resumo:
Purpose: The pathogenesis of diabetic retinopathy (DR) is not fully understood. Clinical studies suggest that dyslipidemia is associated with the initiation and progression of DR. However, no direct evidence supports this theory.
Methods: Immunostaining of apolipoprotein B100 (ApoB100, a marker of low-density lipoprotein [LDL]), macrophages, and oxidized LDL was performed in retinal sections from four different groups of subjects: nondiabetic, type 2 diabetic without clinical retinopathy, diabetic with moderate nonproliferative diabetic retinopathy (NPDR), and diabetic with proliferative diabetic retinopathy (PDR). Apoptosis was characterized using the TUNEL assay. In addition, in cell culture studies using in vitro-modi?ed LDL, the induction of apoptosis by heavily oxidized-glycated LDL (HOG-LDL) in human retinal capillary
pericytes (HRCPs) was assessed.
Results: Intraretinal immuno?uorescence of ApoB100 increased with the severity of DR. Macrophages were prominent only in sections from diabetic patients with PDR. Merged images revealed that ApoB100 partially colocalized with macrophages. Intraretinal oxidized LDL was absent in nondiabetic subjects but present in all three diabetic groups, increasing with the severity of DR. TUNEL-positive cells were present in retinas from diabetic subjects but absent in those from nondiabetic subjects. In cell culture, HOG-LDL induced the activation of caspase, mitochondrial dysfunction, and apoptosis in
HRCPs.
Conclusions: These ?ndings suggest a potentially important role for extravasated, modi?ed LDL in promoting DR by promoting apoptotic pericyte loss.
Resumo:
Reactions involving glycation and oxidation of proteins and lipids are believed to contribute to atherogenesis. Glycation, the nonenzymatic binding of glucose to protein molecules, can increase the atherogenic potential of certain plasma constituents, including low-density lipoprotein (LDL). Glycation of LDL is significantly increased in diabetic patients compared with normal subjects, even in the presence of good glycemic control. Metabolic abnormalities associated with glycation of LDL include diminished recognition of LDL by the classic LDL receptor; increased covalent binding of LDL in vessel walls; enhanced uptake of LDL by macrophages, thus stimulating foam cell formation; increased platelet aggregation; formation of LDL-immune complexes; and generation of oxygen free radicals, resulting in oxidative damage to both the lipid and protein components of LDL and to any nearby macromolecules. Oxidized lipoproteins are characterized by cytotoxicity, potent stimulation of foam cell formation by macrophages, and procoagulant effects. Combined glycation and oxidation, "glycoxidation," occurs when oxidative reactions affect the initial products of glycation, and results in irreversible structural alterations of proteins. Glycoxidation is of greatest significance in long-lived proteins such as collagen. In these proteins, glycoxidation products, believed to be atherogenic, accumulate with advancing age: in diabetes, their rate of accumulation is accelerated. Inhibition of glycation, oxidation, and glycoxidation may form the basis of future antiatherogenic strategies in both diabetic and nondiabetic individuals.
Resumo:
In people with diabetes, glycation of apolipoproteins correlates with other indices of recent glycemic control, including HbA1. For several reasons, increased glycation of apolipoproteins may play a role in the accelerated development of atherosclerosis in diabetic patients. Recognition of glycated LDL by the classical LDL receptor is impaired, whereas its uptake by human monocyte-macrophages is enhanced. These alterations may contribute to hyperlipidemia and accelerated foam-cell formation, respectively. Glycation of LDL also enhances its capacity to stimulate platelet aggregation. The uptake of VLDL from diabetic patients by human monocyte-macrophages is enhanced. This enhancement may be due, at least in part, to increased glycation of its lipoproteins. Glycation of HDL impairs its recognition by cells and reduces its effectiveness in reverse cholesterol transport. Glycation of apolipoproteins may also generate free radicals, increasing oxidative damage to the apolipoproteins themselves, the lipids in the particle core, and any neighboring macromolecules. This effect may be most significant in extravasated lipoproteins. In these, increased glycation promotes covalent binding to vascular structural proteins, and oxidative reactions may cause direct damage to the vessel wall. Glycoxidation, or browning, of sequestered lipoproteins may further enhance their atherogenicity. Finally, glycated or glycoxidized lipoproteins may be immunogenic, and lipoprotein-immune complexes are potent stimulators of foam-cell formation.