650 resultados para MT1-MMP
Resumo:
As an extracellular second messenger, nitric oxide (NO) mediates the modification of proteins through nitrosylation of cysteine andtyrosine residues. Tissue Transglutaminase (TG2) is a Ca2+ activated, sulfhydryl rich protein with 18 free cysteine residues, which catalyzes ε-(γ glutamyl)lysine crosslink between extracellular and intracellular proteins. NO can nitrosylate up to 15 of the cysteine residues in TG2, leading to the irreversible inactivation of the enzyme activity. The interplay between these two agents was revealed for the first time by our study showing that NO inhibited the TG2-induced transcriptional activation of TGFb1and extracellular matrix (ECM) protein synthesis by nitrosylating TG2 in an inactive confirmation with inert catalytic activity. However, nitrosylated TG2 was still able to serve as a novel cell adhesion protein. In the light of our previous findings, in this study we aim to elucidate the NO modified function of TG2 in cell migration using an in vitro model mimicking the tissue matrix remodeling phases of wound healing. Using transfected fibroblasts expressing TG2 under the control of the tetracycline-off promoter, we demonstrate that upregulation of TG2 expression and activity inhibited the cell migration through the activation of TGFβ1. Increased TG2 activity led to arise in the biosynthesis and activity of the gelatinases, MMP-2 andMMP-9, while decreasing the biosynthesis and activity of the col-lagenases MMP-1a and MMP-13. NO donor S-Nitroso-N-acetyl-penicillamine (SNAP) treatment relieved the TG2 obstructed-cellmigration by blocking the TG2 enzyme activity. In addition,decrease in TG2 activity due to nitrosylation led to an inhibition of TGFβ1, which in turn affected the pattern of MMP activation. Recent evidence suggests that, once in complex with fibronectin in the ECM, TG2 can interact with syndecan-4 or integrinβ-1and regulate the cell adhesion. In the other part of this study, the possible role of nitrosylated TG2 on the regulation of cell migration during wound healing was investigated with respect to its interactions with integrin β1 (ITGβ1) and syndecan-4 (SDC4). Treatment with TG2 inhibitor Z-DON resulted in a 50% decrease in the TG2 interaction with ITGB1 and SDC4, while increasing concentrations of SNAP firstly led to a substantial decrease and then completely abolished the TG2/ITGβ1 and TG2/SDC4 complex formation on the cell surface. Taken together, data obtained from this study suggests that nitrosylation of TG2 leads to a change not only in the binding partners of TG2 on cell surface but also in TGFβ1-dependent MMP activation, which give rise to an increase in the migration potential of fibroblasts.
Resumo:
Skin cancer is the most common form of cancer in the United States. Melanoma is a particular type of skin cancer, which arises from the malignant transformation of melanocytes and generally exhibits a high propensity to metastasize. Melanoma progression is dependent on angiogenesis to deliver the oxygen and nutrients required to maintain the altered metabolism of rapidly proliferating tumorigenic cells. Recent studies have implicated the growth factor Endothelin 3 (Edn3) in melanoma progression and metastasis. The aim of this study was to examine the role that Edn3 plays in the angiogenesis of melanocytic lesions. For this purpose, Dct-Grm1 transgenic mice, which spontaneously acquire melanocytic lesions through the aberrant expression of the metabotropic glutamate receptor 1 (mGluR1), were crossed with K5-Edn3 transgenic mice that overexpress Edn3. Tumors in the Dct-Grm1/K5-Edn3 experimental population were examined and compared to the control Dct-Grm1 population using immuno-fluorescent staining targeted against the vascular endothelial cell marker CD31. Proteomic arrays were also used and identified changes in the expression of specific angiogenic factors. CD31 antibody staining results revealed an increased vascular density in Dct-Grm1/K5-Edn3 tumors compared with tumors from the Dct-Grm1 controls. Analysis of the relative expression of angiogenic proteins showed an upregulation of various vascular factors in tumors from the Dct-Grm1/K5-Edn3 population, including VEGF-B, MMP-8, MMP-9, and Angiogenin. These results suggest that endothelin signaling promotes angiogenesis in melanocytic lesions. Targeting the factors upregulated by Edn3 signaling may prove effective in hindering melanoma progression.
Resumo:
The sensitivity of the tropics to climate change, particularly the amplitude of glacial-to-interglacial changes in sea surface temperature (SST), is one of the great controversies in paleoclimatology. Here we reassess faunal estimates of ice age SSTs, focusing on the problem of no-analog planktonic foraminiferal assemblages in the equatorial oceans that confounds both classical transfer function and modern analog methods. A new calibration strategy developed here, which uses past variability of species to define robust faunal assemblages, solves the no-analog problem and reveals ice age cooling of 5° to 6°C in the equatorial current systems of the Atlantic and eastern Pacific Oceans. Classical transfer functions underestimated temperature changes in some areas of the tropical oceans because core-top assemblages misrepresented the ice age faunal assemblages. Our finding is consistent with some geochemical estimates and model predictions of greater ice age cooling in the tropics than was inferred by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981] and thus may help to resolve a long-standing controversy. Our new foraminiferal transfer function suggests that such cooling was limited to the equatorial current systems, however, and supports CLIMAP's inference of stability of the subtropical gyre centers.
Resumo:
Periodontal diseases, highly prevalent disease in worldwide population, manifest primarily in two distinct entities: plaque-induced gingivitis and periodontitis. Periodontitis is a chronic inflammatory disease characterized of different levels of collagen, cementum, and alveolar bone destruction. Recent experimental studies demonstrated anti-inflammatory and antirreabsortive effect of antihypertensive agents of the angiotensin II receptor blockers class on periodontal disease. The aim of this study was to evaluate the effects of azilsartan (AZT), a potent inhibitor of the angiotensin II receptor which has minimal adverse effects on bone loss, inflammation, and the expression of matrix metallo proteinases (MMPs), receptor activator of nuclear factor kB ligand (RANKL), receptor activator of nuclear factor kB (RANK), osteoprotegerin (OPG), cyclooxygenase-2 (COX-2), and cathepsin K in periodontal tissue in a rat model of ligature-induced periodontitis. Male Wistar albino rats were randomly divided into 5 groups of 20 rats each: (1) nonligated, water; (2) ligated, water; (3) ligated, 1 mg/kg AZT; (4) ligated, 5 mg/kg AZT; and (5) ligated, 10 mg/kg AZT. All groups were treated with water or AZT for 10 days. Periodontal tissues were analyzed by morphometric exam, histopathology and immunohistochemical detection of MMP-2, MMP-9, COX-2, RANKL, RANK, OPG, and cathepsin K. Levels of IL-1b, IL-10, TNF-a, myeloperoxidase (MPO), and glutathione (GSH) were determined by ELISA. Treatment with 5 mg/kg AZT resulted in reduced MPO (p˂0.05) and IL-1b (p˂0.05) levels and increased in Il-10 levels (p˂0.05). It was observed a reduced expression of MMP-2, MMP-9, COX-2, RANK, RANKL, cathepsin K, and a increased expression of OPG in the animals subjected to experimental periodontitis and threated with AZT (5 mg/kg). Conclusions: These findings suggest an anti-inflammatory and anti-reabsortive effects of AZT on ligature-induced periodontitis in rats.
Resumo:
Intestinal Mucositis is inflammation and/or ulceration of mucosa of the gastrointestinal tract caused by anticancer therapies. Histologically, villous atrophy, damage to enterocytes and infiltration of inflammatory cells. Methotrexate (MTX) is a compound that depletes dihydrofolate pools and is widely used in the treatment of leukemia and other malignancies. The aim of this study was to evaluate the effect of Olmesartan (OLM), an angiotensin II receptor antagonist, on an Intestinal Mucositis Model (IMM) induced by MTX in Wistar rats. IMM was induced via intraperitoneal (i.p.) administration of MTX (7 mg/kg) for three consecutive days. The animals were pretreated with oral OLM at 0.5, 1 or 5 mg/kg or with vehicle 30 min prior to exposure to MTX, for three days. Small intestinal (duodenum, jejunum and ileum) homogenates were assayed for levels of the IL-1β, IL-10 and TNF-α cytokines, malondialdehyde and myeloperoxidase activity. Additionally, immunohistochemical analyses of MMP-2, MMP-9, COX-2, RANK/RANKL and SOCS-1 and confocal microscopy analysis of SOCS-1 expression were performed. Treatment with MTX+OLM (5 mg/kg) resulted in a reduction of mucosal inflammatory infiltration, ulcerations, vasodilatation and hemorrhagic areas (p<0.05) as well as reduced concentrations of MPO (p<0.001) and the pro-inflammatory cytokines IL-1β and TNF-α (p<0.01), and increase antiinflammatory cytosine IL-10 (p,0.05). Additionally, the combined treatment reduced expression of MMP-2, MMP-9, COX-2, RANK and RANKL (p<0.05) and increased cytoplasmic expression of SOCS-1 (p<0.05). Our findings confirm the involvement of OLM in reducing the inflammatory response through increased immunosuppressive signaling in an IMM. We also suggest that the beneficial effect of Olmesartan treatment is specifically exerted during the damage through blocking inflammatory cytosines.
Resumo:
A periodontite é uma doença crônica inflamatória mediada por marcadores inflamatórios, tais como as citocinas: IL-1β, IL-10 e TNF-α, que provoca a destruição dos tecidos gengivais e osso alveolar, causando perda de inserção dentária e posterior perda dental. A perda óssea é causada pela ativação de prostaglandinas oriundas do ácido araquidônico, através da ação da enzima ciclooxigenase 2 (COX-2), promovendo a liberação de enzimas proteolíticas, as metaloproteinases de matriz, principalmente a MMP-2 e MMP-9, que promovem reabsorção óssea. Além disso, ocorre o desequilíbrio entre a ação de RANKL e OPG, havendo uma maior ativação de RANKL, e por consequência a maior ativação de osteoclastos e maior reabsorção óssea. Mediadores inflamatórios e espécies reativas de oxigênio (ROS) produzidos localmente possuem potencial para disseminar na corrente sanguínea e iniciar ou exacerbar doenças sistêmicas como as cardiovasculares. O tratamento atual da doença consiste em terapêutica local, mas a necessidade de estudos sobre fármacos de atuação sistêmica culminou nesta pesquisa, que realizou a avaliação dos fármacos: atorvastatin, carvedilol, olmesartan e telmisartan, quanto a sua ação anti-inflamatória sobre a doença periodontal induzida por ligadura em ratos Wistar. Os animais foram divididos em 5 grupos, para cada fármaco, separadamente: (NL) grupo não ligado, (L) grupo ligado sem tratamento, (1mg/Kg) grupo ligado que recebeu dose de 1mg/Kg de fármaco, (5 ou 6 mg/Kg) grupo ligado que recebeu dose de 5 ou 6 mg/Kg de fármaco, (10 mg/Kg) grupo ligado que recebeu dose de 10mg/Kg de fármaco. Foram realizadas avaliações: histopatológica, perda óssea alveolar, imuno-histoquímica (para COX-2, MMP-2, MMP-9, RANK-L, RANK e OPG), e ELISA (para mieloperoxidase, glutationa, malonaldeído e as citocinas: IL-1β, IL-10 e TNF-α). Os grupos tratados com olmesartana a 6 mg/Kg, e atorvastatin, carvedilol e telmisartan a 10mg/Kg, mostraram diminuição da perda óssea, redução de: MPO, MDA, IL-1β, TNF-α, MMP-2, MMP-9, COX-2, RANKL/RANK, e aumento na expressão da OPG e da IL-10.
Resumo:
Except the non-melanoma skin tumors, colorectal cancer is the second most common in the Southeastern Region of Brazil, the third most common in the Southern and Central Regions. It is also the forth most common in the Northern Region and it is the fifth one in the Northeastern. To assess pathological and clinical variables of colorectal Cancer is crucial to know the possible conclusions for the survival of patients and point out the characteristics in the progress of tumor, such as the profile of tumor invasion and its angiogenesis. This work focuses on analyzing clinically and pathologically some settings in colorectal cancer patients (CRC) in the city of Natal and its countryside through those variables as parameters of prognosis and determine the level of protein expression, for instance: E-cadherin (E-cad), beta- -catenin (β-cat), galectin-3 (gal-3), matrix metalloproteinases (MMP) 2 and 9 and vascular-endothelial growth factor alpha (α VEGF) in the tumor tissues. A retrospective study was done in colorectal cancer cases in the regions of Rio Grande do Norte state from 1995 to 2005, specifically in Natal city/RN/Brazil. The pathological and clinical variables, such as: age, gender, ethnicity, lifestyle, family history, the location of the primary tumor, level of differentiation, TDM staging, modified Dukes’, treatment and survival were analyzed. The pathological and clinical data were collected from medical records through a specific form and were filed on Excel. A total of 534 patients were selected from the Pathology Department file in this institution, however, 176 patients were excluded. 358 patients were included for Epidemiological analysis and its clinical and pathological correlations were selected. 180 patients were also selected for histological and immunohistochemical studies. The tumor progression of these selected proteins mentioned before were analyzed. The Paraffin blocks of these samples were treated by Microarray Tissue technique and its blades subjected to immunohistochemistry to test the intensity of these proteins in tumor tissues. The results of this analysis were correlated with clinicopathologic variables of patients. Statistical analysis using the chi-frame Pearson test and analysis of midlife by Kaplan-Meier curve was also utilized. P values < 0.05 were considered statistically significant. The average age of our sample was 58.8 years and 51.7 % were female. Alcohol consumption has increased by 1.71 time the risk of death by CCR (p = 0.034) and tobacco consumption increased 2.7 times the chance of developing tumors of high TNM stage (p = 0.001). Cancer patients had a family history of 3,833 times the chance of developing the CCR (p = 0.002). The expression of MMP-2 showed a significant association with tumors of high TNM stage (p <0.046) and mortality (p = 0.041). The α VEGF expression had statistically significant correlation with high TNM stage (p <0.009), degree of cell indifferentiation (p <0.025) and mortality (p <0.035). Expressions of E-cadherin and beta-catetina demonstrated tumor linked to high TNM stage (p = 0.0001) and Dukes› modified (p = 0.05), lesions in the rectum (p = 0.03 and p = 0.007, respectively), smoking (p = 0.05) and indifferentiation (p = 0.001). The expression of Gal-3 showed statistical significance with high TNM stage of patients (p = 0.01), smokers (p = 0.01), alcohol drinking (p = 0.03), indifferentiation (p = 0.0001) and mortality (p = 0.0001). Based on the results, therefore, we could realize that lifestyle and family history had correlation in the CCR prognosis, as well as MMP-2 expression, MMP-9, VEGF alpha, E-cadherin, Beta-catenin and Galectin-3 were important prognostic markers in tumor progression in colorectal cancer.
Resumo:
OBJECTIVE: The aim of this study was to compare the immunohistochemical expression of nuclear factor κB (NF-κB), matrix metalloproteinase 9 (MMP-9), and CD105 in odontogenic keratocysts (OKCs), dentigerous cysts (DCs), and radicular cysts (RCs). STUDY DESIGN: Twenty cases of OKCs, 20 DCs, and 20 RCs were analyzed. A labeling index (LI), which expresses the percentage of NF-κB-stained nuclei, was calculated for the analysis of NF-κB expression. Expression of MMP-9 in the epithelium and in the capsule of each lesion was scored as 0 (<10% stained cells), 1 (10%-50% stained cells), or 2 (>50% stained cells). In addition, MMP-9 immunostaining was analyzed in endothelial cells of vessels with a conspicuous lumen. The angiogenic index was determined based on the number of anti-CD105 antibody-stained microvessels. RESULTS: In the epithelial component, the NF-κB LI was higher in OKCs than in DCs and RCs (P < .001). Analysis of MMP-9 expression in the epithelial component showed a predominance of score 2 in OKCs (90%), DCs (70%), and RCs (65%; P = .159). Evaluation of the NF-κB LI according to the expression of MMP-9 in the epithelial lining revealed no significant difference between lesions (P = .282). In the fibrous capsule, the highest percentage of MMP-9-stained cells (score 2) was observed in OKCs (P = .100). Analysis of the expression of MMP-9 in the vessels of odontogenic cysts showed a predominance of score 2 in OKCs (80%) and RCs (50%) and of score 1 in DCs (75%; P = .002). Mean microvessel count was high in RCs (16.9), followed by DCs (12.1) and OKCs (10.0; P = .163). No significant difference in microvessel count according to the expression of MMP-9 was observed between groups (P = .689). CONCLUSIONS: The results suggest that the more aggressive biologic behavior of OKCs is related to the higher expression of MMP-9 and NF-κB in those lesions. The differences in the biologic behavior of the lesions studied do not seem to be associated with the angiogenic index.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
The MazEF toxin-antitoxin (TA) system consists of the antitoxin MazE and the toxin MazF. MazF is a sequence-specific endoribonuclease that upon activation causes cellular growth arrest and increass the level of persisters. Moreover, MazF-induced cells are in a quasi-dormant state that cells remain metabolically active while stop dividing. The quasi-dormancy is similar to the nonreplicating state of M. tuberculosis during latent tuberculosis, thus suggesting the role of mazEF in M. tuberculosis dormancy and persistence. M. tuberculosis has nine mazEF TA modules, each with different RNA cleavage specificities and implicated in selective gene expression during stress conditions. To date only the Bacillus subtilis MazF-RNA complex structure has been determined. As M. tuberculosis MazF homologues recognize distinct RNA sequences, their molecular mechanisms of substrate specificity remain unclear. By taking advantage of X-ray crystallography, we have determined structures of two M. tuberculosis MazF-RNA complexes, MazF-mt1 (Rv2801c) and MazF-mt3 (Rv1991c) in complex with an uncleavable RNA substrate. These structures have provided the molecular basis of sequence-specific RNA recognition and cleavage by MazF toxins.
Both MazF-mt1-RNA and MazF-mt3-RNA complexes showed similar structural organization with one molecule of RNA bound to a MazF-mt1 or MazF-mt3 dimer and occupying the same pocket within the MazF dimer interface. Similar to B. subtilis MazF-RNA complex, MazF-mt1 and MazF-mt3 displayed a conserved active site architecture, where two highly conserved residues, Arg and Thr, form hydrogen bonds with the scissile phosphate group in the cleavage site of the bound RNA. The MazF-mt1-RNA complex also showed specific interactions with its three-base RNA recognition element. Compared with the B. subtilis MazF-RNA complex, our structures showed that residues involved in sequence-specific recognition of target RNA vary between the MazF homologues, therefore explaining the molecular basis for their different RNA recognition sequences. In addition, local conformational changes of the loops in the RNA binding site of MazF-mt1 appear to play a role in MazF targeting different RNA lengths and sequences. In contrast, the MazF-mt3-RNA complex is in a non-optimal RNA binding state with a symmetry-related MazF-mt3 molecule found to make interactions with the bound RNA in the crystal. The crystal-packing interactions were further examined by isothermal titration calorimetry (ITC) studies on selected MazF-mt3 mutants. Our attempts to utilize a MazF-mt3 mutant bearing mutations involved in crystal contacts all crystallized with few nucleotides, which are still found to interact with a symmetry mate. However, these different crystal forms revealed the conformational flexibility of loops in the RNA binding interface of MazF-mt3, suggesting their role in RNA binding and recognition, which will require further studies on additional MazF-mt3-RNA complex interactions.
In conclusion, the structures of the MazF-mt1-RNA and MazF-mt3-RNA complexes provide the first structural information on any M. tuberculosis MazF homologues. Supplemented with structure-guided mutational studies on MazF toxicity in vivo, this study has addressed the structural basis of different RNA cleavage specificities among MazF homologues. Our work will guide future studies on the function of other M. tuberculosis MazF and MazE-MazF homologues, and will help delineate their physiological roles in M. tuberculosis stress responses and pathogenesis.