955 resultados para Low-cost Telemedicine
Resumo:
This research aims to advance blinking detection in the context of work activity. Rather than patients having to attend a clinic, blinking videos can be acquired in a work environment, and further automatically analyzed. Therefore, this paper presents a methodology to perform the automatic detection of eye blink using consumer videos acquired with low-cost web cameras. This methodology includes the detection of the face and eyes of the recorded person, and then it analyzes the low-level features of the eye region to create a quantitative vector. Finally, this vector is classified into one of the two categories considered —open and closed eyes— by using machine learning algorithms. The effectiveness of the proposed methodology was demonstrated since it provides unbiased results with classification errors under 5%
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e de Computadores
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Tese de Doutoramento em Engenharia Civil
Resumo:
Tese de Doutoramento (Programa Doutoral em Engenharia Biomédica)
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Blood typing is a crucial step before any blood transfusion. However, sometimes in emergency situations there is no time to determine the blood of the patient beforehand. In this cases, O negative blood type is administered, which has a lesser incompatibility risk to the patient. Nowadays, the “gold standard” blood typing devices cannot be used in emergency situations due to their high response time (about 30 minutes). This paper reports a blood typing device that determines the ABO and Rh human phenotypes. This device is fast (response time – 5 min), low-cost, and portable. Characteristics that make it suitable to be used in emergency situations, contributing to a higher efficiency and quality in healthcare.
Resumo:
This paper reports the fabrication process and characterization of a flexible pressure sensor based on polydimethylsiloxane (PDMS) and multi-walled carbon nanotubes (CNT-PDMS). The proposed approach relies on patterned CNT-PDMS nanocomposite strain gauges fabricated with SU-8 microstructures (with the micropatterns) in a low‑cost and simple fabrication process. This nanocomposite polymer is mounted over a PDMS membrane, which, in turn, lies on top of a PDMS diaphragm like structure. This configuration enables the PDMS membrane to bend when pressure is applied, thereby affecting the nanocomposite strain gauges, effectively changing their electrical resistance. Carbon nanotubes have several advantages such as excellent mechanical properties, high electrical conductivity and thermal stability. Furthermore, the measurement range of the proposed sensor can be adapted according to the application by varying the CNTs content and geometry of microstructure. In addition, the sensor’s biocompatibility, low cost and simple fabrication makes it very appealing for biomechanical strain sensing. The sensor’s sensitivity was about 0.073%ΔR/mmHg.
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
We propose a novel hanging spherical drop system for anchoring arrays of droplets of cell suspension based on the use of biomimetic superhydrophobic flat substrates, with controlled positional adhesion and minimum contact with a solid substrate. By facing down the platform, it was possible to generate independent spheroid bodies in a high throughput manner, in order to mimic in vivo tumour models on the lab-on-chip scale. To validate this system for drug screening purposes, the toxicity of the anti-cancer drug doxorubicin in cell spheroids was tested and compared to cells in 2D culture. The advantages presented by this platform, such as feasibility of the system and the ability to control the size uniformity of the spheroid, emphasize its potential to be used as a new low cost toolbox for high-throughput drug screening and in cell or tissue engineering.
Resumo:
Fiber membranes prepared from jute fragments can be valuable, low cost, and renewable. They have broad application prospects in packing bags, geotextiles, filters, and composite reinforcements. Traditionally, chemical adhesives have been used to improve the properties of jute fiber membranes. A series of new laccase, laccase/mediator systems, and multi-enzyme synergisms were attempted. After the laccase treatment of jute fragments, the mechanical properties and surface hydrophobicity of the produced fiber membranes increased because of the cross-coupling of lignins with ether bonds mediated by laccase. The optimum conditions were a buffer pH of 4.5 and an incubation temperature of 60 °C with 0.92 U/mL laccase for 3 h. Laccase/guaiacol and laccase/alkali lignin treatments resulted in remarkable increases in the mechanical properties; in contrast, the laccase/2,2-azino-bis-(3-ethylthiazoline-6-sulfonate) (ABTS) and laccase/2,6-dimethoxyphenol treatments led to a decrease. The laccase/ guaiacol system was favorable to the surface hydrophobicity of jute fiber membranes. However, the laccase/alkali lignin system had the opposite effect. Xylanase/laccase and cellulase/laccase combined treatments were able to enhance both the mechanical properties and the surface hydrophobicity of jute fiber membranes. Among these, cellulase/laccase treatment performed better; compared to mechanical properties, the surface hydrophobicity of the jute fiber membranes showed only a slight increase after the enzymatic multi-step processes.
Resumo:
[Excerpt] Lignocellulosic plant biomass is being envisioned by biorefinery industry as an alternative to current petroleum platform because of the large scale availability, low cost and environmentally benign production. The industrial bioprocessing designed to transform lignocellulosic biomass into biofuels are harsh and the enzymatic reactions may be severely compromised reducing the production of fermentable sugars from lignocellulosic biomass. Thermophilic bacteria consortium are a potential source of cellulases and hemicellulases adapted to extreme environmental conditions, which can be exploited as a new source for the development of more robust enzymatic cocktails. (...)
Resumo:
[Excerpt] Citric acid, an important and versatile organic acid extensively used in several industries, is originally produced by Aspergillus niger in submerged fermentation from molasses [1]. However, Yarrowia lipolytica have been studied and demonstrate a great potential as citric acid producer from several carbon sources [1–5] including crude glycerol, a low cost byproduct from the biodiesel industry [6]. The simultaneous production of the isomer isocitric acid is the major problem in using this yeast in the citric acid production. (...)
Resumo:
Dissertação de mestrado em Bioquímica Aplicada (área de especialização em Biotecnologia)
Resumo:
Supplementary data associated with this article can be found, in the online version, at: http://dx.doi.org/10.1016/j.electacta.2015.09.169.