944 resultados para Likelihood principle
Resumo:
This work reports on the crystallization of amorphous silicon (a-Si) films doped with 1 at. % of nickel. The films, with thicknesses ranging from 10 to 3000 nm, were deposited using the cosputtering method onto crystalline quartz substrates. In order to investigate the crystallization mechanism in detail, a series of undoped a-Si films prepared under the same deposition conditions were also studied. After deposition, all a-Si films were submitted to isochronal thermal annealing treatments up to 1000 degrees C and analyzed by Raman scattering spectroscopy. Based on the present experimental results, it is possible to state that (a) when compared to the undoped a-Si films, those containing 1 at. % of Ni crystallize at temperatures similar to 100 degrees C lower, and that (b) the film thickness influences the temperature of crystallization that, in principle, tends to be lower in films thinner than 1000 nm. The possible reasons associated to these experimental observations are presented and discussed in view of some experimental and thermodynamic aspects involved in the formation of ordered Si-Si bonds and in the development of Ni-silicide phases. (c) 2008 American Institute of Physics.
Resumo:
We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
The generator-coordinate method is a flexible and powerful reformulation of the variational principle. Here we show that by introducing a generator coordinate in the Kohn-Sham equation of density-functional theory, excitation energies can be obtained from ground-state density functionals. As a viability test, the method is applied to ground-state energies and various types of excited-state energies of atoms and ions from the He and the Li isoelectronic series. Results are compared to a variety of alternative DFT-based approaches to excited states, in particular time-dependent density-functional theory with exact and approximate potentials.
Resumo:
Here, I investigate the use of Bayesian updating rules applied to modeling how social agents change their minds in the case of continuous opinion models. Given another agent statement about the continuous value of a variable, we will see that interesting dynamics emerge when an agent assigns a likelihood to that value that is a mixture of a Gaussian and a uniform distribution. This represents the idea that the other agent might have no idea about what is being talked about. The effect of updating only the first moments of the distribution will be studied, and we will see that this generates results similar to those of the bounded confidence models. On also updating the second moment, several different opinions always survive in the long run, as agents become more stubborn with time. However, depending on the probability of error and initial uncertainty, those opinions might be clustered around a central value.
Resumo:
METHODS: A total of 4210 students attending public high schools in Pernambuco (northeast of Brazil) were selected using random 2-stage cluster sampling. Data were collected by using the Global School-based Student Health Survey. The independent variable was the frequency of participation in PE classes, whereas physical activity, television viewing, smoking, and alcohol, fruit, vegetables and soda consumption were dependent variables. Logistic regressions were carried out to perform crude and adjusted analysis of the association between enrollment in PE classes and health-related behaviors. RESULTS: Sixty-five percent of students do not take part in PE classes, with a significantly higher proportion among females (67.8%). It was observed that enrollment in PE classes was positively associated with physical activity, TV viewing, and fruit consumption, but was negatively associated with soda drinking. The likelihood of reporting being active and eating fruit on a daily basis was 27% and 45% higher, respectively, among those who participate in at least 2 classes per week in comparison with those who do not. Students who participate in PE classes had 28-30% higher likelihood of reporting lower TV viewing during week days. CONCLUSIONS: Findings suggest that higher levels of enrollment in PE classes could play a role in the promotion of health-related behaviors among high school students.
Resumo:
The aim of this study was to evaluate the predictive validity of the Braden Scale for Predicting Pressure Sore Risk in elderly residents of long-term care facilities (LTCFs) in Brazil. The determination of the cutoff score for the Brazilian population is important for the comparison between Brazilian and international studies and establishment of guidelines for prevention of pressure ulcers in our health care facilities. This is the first study of its kind in Brazil. This was a secondary analysis of a prospective cohort study conducted with 233 LTCF residents aged 60 and over who underwent complete skin examination and Braden Scale rating every 2 days for 3 months. Two groups of patients were considered: the total group (N = 233) and risk group (n = 94, total scores <= 18). Data from the first and last assessments were analyzed for sensitivity, specificity, and likelihood ratios. The best results were obtained for the total group, with cutoff scores of 18 and 17, sensitivity of 75.9% and 74.1%, specificity of 70.3% and 75.4%, and area under the receiver operating characteristic curve (AUC-ROC) of 0.79 and 0.81 at the first and last assessments, respectively. For the risk group, the cutoff scores of 16 (first assessment) and 13 (last assessment) were associated with a smaller AUC-ROC and, therefore, lower predictive accuracy. The Braden Scale showed good predictive validity in elderly LTCF residents. (Geriatr Nurs 2010;31:95-104)
Resumo:
AIM: We sought to evaluate the predictive validity of the Waterlow Scale in hospitalized patients. SUBJECTS AND SETTING: The study was conducted at a general private hospital with 220 beds and a mean time of hospitalization of 7.4 days and a mean occupation rate of approximately 80%. Adult patients with a Braden Scale score of 18 or less and a Waterlow Scale score of 16 or more were studied. The sample consisted of 98 patients with a mean age of 71.1 +/- 15.5 years. METHODS: Skin assessment and scoring by using the Waterlow and Braden scales were completed on alternate days. Patients were examined at least 3 times to be considered for analysis. The data were submitted to sensitivity and specificity analysis by using receiver operating characteristic (ROC) curves and positive (+LR) and negative (-LR) likelihood ratios. RESULTS: The cutoff scores were 17, 20, and 20 in the first, second, and third assessment, respectively. Sensitivity was 71.4%, 85.7%, and 85.7% and specificity was 67.0%, 40.7%, and 32.9%, respectively. Analysis of the area under the ROC curve revealed good accuracy (0.64, 95% confidence interval [CI]: 0.35-0.93) only for the cutoff score 17 in the first assessment. The results also showed probabilities of 14%, 10%, and 9% for the development of pressure ulcer when the test results were positive (+LR) and of 3% (-LR) when the test results were negative for the cutoff scores in the first, second, and third assessment, respectively. CONCLUSION: The Waterlow Scale achieved good predictive validity in predicting pressure ulcer in hospitalized patients when a cutoff score of 17 was used in the first assessment.
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results of research into the use of the Bellman-Zadeh approach to decision making in a fuzzy environment for solving multicriteria power engineering problems. The application of the approach conforms to the principle of guaranteed result and provides constructive lines in computationally effective obtaining harmonious solutions on the basis of solving associated maxmin problems. The presented results are universally applicable and are already being used to solve diverse classes of power engineering problems. It is illustrated by considering problems of power and energy shortage allocation, power system operation, optimization of network configuration in distribution systems, and energetically effective voltage control in distribution systems. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents results of research related to multicriteria decision making under information uncertainty. The Bell-man-Zadeh approach to decision making in a fuzzy environment is utilized for analyzing multicriteria optimization models (< X, M > models) under deterministic information. Its application conforms to the principle of guaranteed result and provides constructive lines in obtaining harmonious solutions on the basis of analyzing associated maxmin problems. This circumstance permits one to generalize the classic approach to considering the uncertainty of quantitative information (based on constructing and analyzing payoff matrices reflecting effects which can be obtained for different combinations of solution alternatives and the so-called states of nature) in monocriteria decision making to multicriteria problems. Considering that the uncertainty of information can produce considerable decision uncertainty regions, the resolving capacity of this generalization does not always permit one to obtain unique solutions. Taking this into account, a proposed general scheme of multicriteria decision making under information uncertainty also includes the construction and analysis of the so-called < X, R > models (which contain fuzzy preference relations as criteria of optimality) as a means for the subsequent contraction of the decision uncertainty regions. The paper results are of a universal character and are illustrated by a simple example. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The roots of swarm intelligence are deeply embedded in the biological study of self-organized behaviors in social insects. Particle swarm optimization (PSO) is one of the modern metaheuristics of swarm intelligence, which can be effectively used to solve nonlinear and non-continuous optimization problems. The basic principle of PSO algorithm is formed on the assumption that potential solutions (particles) will be flown through hyperspace with acceleration towards more optimum solutions. Each particle adjusts its flying according to the flying experiences of both itself and its companions using equations of position and velocity. During the process, the coordinates in hyperspace associated with its previous best fitness solution and the overall best value attained so far by other particles within the group are kept track and recorded in the memory. In recent years, PSO approaches have been successfully implemented to different problem domains with multiple objectives. In this paper, a multiobjective PSO approach, based on concepts of Pareto optimality, dominance, archiving external with elite particles and truncated Cauchy distribution, is proposed and applied in the design with the constraints presence of a brushless DC (Direct Current) wheel motor. Promising results in terms of convergence and spacing performance metrics indicate that the proposed multiobjective PSO scheme is capable of producing good solutions.
Resumo:
A geometrical approach of the finite-element analysis applied to electrostatic fields is presented. This approach is particularly well adapted to teaching Finite Elements in Electrical Engineering courses at undergraduate level. The procedure leads to the same system of algebraic equations as that derived by classical approaches, such as variational principle or weighted residuals for nodal elements with plane symmetry. It is shown that the extension of the original procedure to three dimensions is straightforward, provided the domain be meshed in first-order tetrahedral elements. The element matrices are derived by applying Maxwell`s equations in integral form to suitably chosen surfaces in the finite-element mesh.