956 resultados para Layer dependent order parameters
Resumo:
MCNP has stood so far as one of the main Monte Carlo radiation transport codes. Its use, as any other Monte Carlo based code, has increased as computers perform calculations faster and become more affordable along time. However, the use of Monte Carlo method to tally events in volumes which represent a small fraction of the whole system may turn to be unfeasible, if a straight analogue transport procedure (no use of variance reduction techniques) is employed and precise results are demanded. Calculations of reaction rates in activation foils placed in critical systems turn to be one of the mentioned cases. The present work takes advantage of the fixed source representation from MCNP to perform the above mentioned task in a more effective sampling way (characterizing neutron population in the vicinity of the tallying region and using it in a geometric reduced coupled simulation). An extended analysis of source dependent parameters is studied in order to understand their influence on simulation performance and on validity of results. Although discrepant results have been observed for small enveloping regions, the procedure presents itself as very efficient, giving adequate and precise results in shorter times than the standard analogue procedure. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We analyze the influence of a surface dielectric layer on the transient phenomena related to the ionic redistribution in an electrolytic cell submitted to a step-like external voltage. The adsorption-desorption phenomenon is taken into account in the famework of the Gouy-Chapman approximation, where the ions are assumed dimensionless. In the limit of small amplitude of the applied voltage, where the equations of the problem can be linearized, we obtain an analytical solution for the surface densities of ions, for the electrical potential and for the relaxation time for the transient phenomena. In the general case, when the linearized analysis is no longer valid, the solution of the problem is obtained numerically. The role of the thickness of the dielectric layer on the relaxation time is also discussed.
Resumo:
The distributions of coercivities and magnetic interactions in a set of polycrystalline Ni(0.8)Fe(0.2)/FeMn bilayers have been determined using the first-order reversal curve (FORC) formalism. The thickness of the permalloy (Py) film was fixed at 10 nm (nominal), while that of the FeMn film varied within the range 0-20 nm. The FORC diagrams of each bilayer displayed two clearly distinguishable regions. The main region was generated by Py particles whose coercivities were enhanced in comparison with those in which the FeMn film was absent (sample O). The minor region was produced by Py particles with coercivities similar to or slightly higher than those of particles in the Py film of sample O. Each sample presented two distributions of interaction fields, one for each region, and both were centred slightly below the exchange-bias field, thus indicating a prevalence of magnetizing interactions. These results are consistent with a grain size distribution in the Py layer and the presence of uncompensated antiferromagnetic moments.
Resumo:
We discuss the possibility of implementing a universal quantum XOR gate by using two coupled quantum dots subject to external magnetic fields that are parallel and slightly different. We consider this system in two different field configurations. In the first case, parallel external fields with the intensity difference at each spin being proportional to the time-dependent interaction between the spins. A general exact solution describing this system is presented and analyzed to adjust field parameters. Then we consider parallel fields with intensity difference at each spin being constant and the interaction between the spins switching on and off adiabatically. In both cases we adjust characteristics of the external fields (their intensities and duration) in order to have the parallel pulse adequate for constructing the XOR gate. In order to provide a complete theoretical description of all the cases, we derive relations between the spin interaction, the inter-dot distance, and the external field. (C) 2008 WILEYNCH Verlag GmbH & Co. KGaA. Weinheim.
Resumo:
We revisit the non-dissipative time-dependent annular billiard and we consider the chaotic dynamics in two planes of conjugate variables in order to describe the behavior of the growth, or saturation, of the mean velocity of an ensemble of particles. We observed that the changes in the 4-d phase space occur without changing any parameter. They occur depending on where the initial conditions start. The emerging KAM islands interfere in the behavior of the particle dynamics especially in the Fermi acceleration mechanism. We show that Fermi acceleration can be suppressed, without dissipation, even considering the non-dissipative energy context. (C) 2011 Published by Elsevier Ltd.
Resumo:
Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The fabrication of controlled molecular architectures is essential for organic devices, as is the case of emission of polarized light for the information industry. In this study, we show that optimized conditions can be established to allow layer-by-layer (LbL) films of poly(p-phenylene vinylene) (PPV)+dodecylbenzenesulfonate (DBS) to be obtained with anisotropic properties. Films with five layers and converted at 110 degrees C had a dichroic ratio delta = 2.3 and order parameter r = 34%, as indicated in optical spectroscopy and emission ellipsometry data. This anisotropy was decreased with the number of layers deposited, with delta = 1.0 for a 75-layer LbL PPV + DBS film. The analysis with atomic force microscopy showed the formation of polymer clusters in a random growth process with the normalized height distribution being represented by a Gaussian function. In spite of this randomness in film growth, the self-covariance function pointed to a correlation between clusters, especially for thick films. In summary, the LbL method may be exploited to obtain both anisotropic films with polarized emission and regular, nanostructured surfaces. (c) 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 206-213, 2011
Resumo:
The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Using Heavy Quark Effective Theory with non-perturbatively determined parameters in a quenched lattice calculation, we evaluate the splittings between the ground state and the first two radially excited states of the B(s) system at static order. We also determine the splitting between first excited and ground state, and between the B(s)* and B(s) ground states to order 1/m(b). The Generalized Eigenvalue Problem and the use of all-to-all propagators are important ingredients of our approach.
Resumo:
We study the reconstruction of visual stimuli from spike trains, representing the reconstructed stimulus by a Volterra series up to second order. We illustrate this procedure in a prominent example of spiking neurons, recording simultaneously from the two H1 neurons located in the lobula plate of the fly Chrysomya megacephala. The fly views two types of stimuli, corresponding to rotational and translational displacements. Second-order reconstructions require the manipulation of potentially very large matrices, which obstructs the use of this approach when there are many neurons. We avoid the computation and inversion of these matrices using a convenient set of basis functions to expand our variables in. This requires approximating the spike train four-point functions by combinations of two-point functions similar to relations, which would be true for gaussian stochastic processes. In our test case, this approximation does not reduce the quality of the reconstruction. The overall contribution to stimulus reconstruction of the second-order kernels, measured by the mean squared error, is only about 5% of the first-order contribution. Yet at specific stimulus-dependent instants, the addition of second-order kernels represents up to 100% improvement, but only for rotational stimuli. We present a perturbative scheme to facilitate the application of our method to weakly correlated neurons.
Resumo:
The main object of this paper is to discuss the Bayes estimation of the regression coefficients in the elliptically distributed simple regression model with measurement errors. The posterior distribution for the line parameters is obtained in a closed form, considering the following: the ratio of the error variances is known, informative prior distribution for the error variance, and non-informative prior distributions for the regression coefficients and for the incidental parameters. We proved that the posterior distribution of the regression coefficients has at most two real modes. Situations with a single mode are more likely than those with two modes, especially in large samples. The precision of the modal estimators is studied by deriving the Hessian matrix, which although complicated can be computed numerically. The posterior mean is estimated by using the Gibbs sampling algorithm and approximations by normal distributions. The results are applied to a real data set and connections with results in the literature are reported. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We introduce in this paper the class of linear models with first-order autoregressive elliptical errors. The score functions and the Fisher information matrices are derived for the parameters of interest and an iterative process is proposed for the parameter estimation. Some robustness aspects of the maximum likelihood estimates are discussed. The normal curvatures of local influence are also derived for some usual perturbation schemes whereas diagnostic graphics to assess the sensitivity of the maximum likelihood estimates are proposed. The methodology is applied to analyse the daily log excess return on the Microsoft whose empirical distributions appear to have AR(1) and heavy-tailed errors. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Oxidative DNA damage plays a role in disease development and the aging process. A prominent participant in orchestrating the repair of oxidative DNA damage, particularly single-strand breaks, is the scaffold protein XRCC1. A series of chronological and biological aging parameters in XRCC1 heterozygous (HZ) mice were examined. HZ and wild-type (WT) C57BL/6 mice exhibit a similar median lifespan of similar to 26 months and a nearly identical maximal life expectancy of similar to 37 months. However, a number of HZ animals (7 of 92) showed a propensity for abdominal organ rupture, which may stem from developmental abnormalities given the prominent role of XRCC1 in endoderm and mesoderm formation. For other end-points evaluated-weight, fat composition, blood chemistries, condition of major organs, tissues and relevant cell types, behavior, brain volume and function, and chromosome and telomere integrity-HZ mice exhibited by-and-large a normal phenotype. Treatment of animals with the alkylating agent azoxymethane resulted in both liver toxicity and an increased incidence of precancerous lesions in the colon of HZ mice. Our study indicates that XRCC1 haploinsufficiency in mammals has little effect on chronological longevity and many key biological markers of aging in the absence of environmental challenges, but may adversely affect normal animal development or increase disease susceptibility to a relevant genotoxic exposure.
Resumo:
Copper hexacyanoferrate nanoparticles of about 30 nm in size have been prepared by the sonochemical irradiation of a mixture of aqueous potassium ferricyanide and copper chloride solutions. The nanoparticles were immobilized onto fluorine doped tin oxide (FTO) electrodes by using the electrostatic deposition layer-by-layer technique (LbL), obtaining electroactive films with electrocatalytic properties towards H2O2 reduction, providing higher currents than those observed for electrodeposited bulk material, even in electrolytes containing NH4+, Na+ and K+. The nanoparticles assembly was used as mediator in a glucose biosensor by immobilizing glucose oxidase enzyme by both, cross-linking and LbL. techniques. Sensitivities obtained were dependent on the immobilization method ranging from 1.23 mu A mmol(-1) L cm(-2) for crosslinking to 0.47 mu A mmol(-1) L cm(-2) for LbL; these values being of the same order than those obtained with electrodes where the amount of enzyme used is much higher. Moreover, the linear concentration range where the biosensors can operate was 10 times higher for electrodes prepared with the LbL immobilization method than with the conventional crosslinking one. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diffusion coefficients and retardation factors of two metal cations (Cd2+ and Pb2+) were measured for a compacted Brazilian saprolitic soil derived from gneiss, aiming to assess its geoenvironmental performance as a liner for waste disposal sites. This soil occurs extensively all over the country in very thick layers, but has not been used in liners because of its hydraulic conductivity, higher than 10(-9) m/s when compacted at optimum water content of standard Proctor energy, but which can be reduced by means of appropriate compaction techniques or additives. Batch, column, and diffusion tests were carried out with monospecies synthetic solutions at pH 1, 3, and 5.5. Measured diffusion coefficients varied between 0.5 and 4 X 10(-10) m(2)/s. Retardation factors show that cadmium, a very mobile cation, is not adsorbed at pH I but is significantly retained at pH 3 and pH 5.5, whereas lead is retained at all tested pH values though slightly at pH 1. Estimated retardation factors from batch tests were 1.3-2.3 times those resulting from column tests and at its highest when obtained by diffusion tests; whereas batch tests allow a more complete exposure of the soil grains to the solution, time-dependent nonspecific adsorption may take longer to occur. The importance of contact time was observed and should be considered in further investigations. Its significant retention of metals suggests a promising utilization of this soil as a bottom liner for wastes landfills.