987 resultados para LAYER CHARGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The encapsulation of probiotic Lactobacillus acidophilus through layer-by-layer self-assembly of polyelectrolytes (PE) chitosan (CHI) and carboxymethyl cellulose (CMC) has been investigated,to enhance its survival m adverse conditions encountered in the GI tract The survival of encapsulated cells in simulated gastric (SGF) and intestinal fluids (SIF) is significant when compared to nonencapsulated cells On sequential exposure to SGF and SIF fox 120 nun, almost complete death of free cells is observed However, for cells coated with three nanolayers of PEs (CHI/CMC/CHI) about 33 log % of the cells (6 log cfu/500 mg) survived under the same conditions The enhanced survival rate of encapsulated L acidophilus can be attributed to the impermeability of polyelectrolyte nanolayers to large enzyme molecules like pepsin, and pancreatin that cause proteolysis and to the stability of the polyelectrolyte nanolayers in gastric and intestinal pH The PE coating also serves to reduce viability losses during freezing and freeze- drying About 73 and 92 log % of uncoated and coated cells survived after freeze:drying, and the losses occurring between freezing and freeze-drying were found to be lower for coated cells

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Liquid water is known to exhibit remarkable thermodynamic and dynamic anomalies, ranging from solvation properties in supercritical state to an apparent divergence of the linear response functions at a low temperature. Anomalies in various dynamic properties of water have also been observed in the hydration layer of proteins, DNA grooves and inside the nanocavity, such as reverse micelles and nanotubes. Here we report studies on the molecular origin of these anomalies in supercooled water, in the grooves of DNA double helix and reverse micelles. The anomalies have been discussed in terms of growing correlation length and intermittent population fluctuation of 4- and 5-coordinated species. We establish correlation between thermodynamic response functions and mean squared species number fluctuation. Lifetime analysis of 4- and 5-coordinated species reveals interesting differences between the role of the two species in supercooled and constrained water. The nature and manifestations of the apparent and much discussed liquid-liquid transition under confinement are found to be markedly different from that in the bulk. We find an interesting `faster than bulk' relaxation in reverse micelles which we attribute to frustration effects created by competition between the correlations imposed by surface interactions and that imposed by hydrogen bond network of water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, various kinds of textures, namely, unidirectional, 8-ground, and random were attained on the die surfaces. Roughness of the textures was varied using different grits of emery papers or polishing powders. Then pins made of Al-4Mg alloys were slid against steel plates at various numbers of cycles, namely, 1, 3, 5, 10 and 20 using pin-on-plate reciprocating sliding tester. Tests were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. A constant normal load of 35 N was applied in the tests. The morphologies of the worn surfaces of the pins and the formation of transfer layer on the counter surfaces were observed using a scanning electron microscope. Surface roughness parameters of the plates were measured using an optical profilometer. In the experiments, it was observed that the coefficient of friction and formation of the transfer layer depend on the die surface textures under both dry and lubricated conditions. More specifically, the coefficient of friction decreases for unidirectional and 8-ground surfaces while for random surfaces it increases with number of cycles. However, the coefficient of friction is highest for the sliding perpendicular to the unidirectional textures and least for the random textures under both dry and lubricated conditions. The difference in friction values between these two surfaces decreases with increasing number of cycles. The variation in the coefficient of friction under both dry and lubrication conditions is attributed to the change in texture of the surfaces during sliding. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present investigation, various kinds of surface textures were attained on the steel plates. Roughness of the textures was varied using various grinding or polishing methods. The surface textures were characterized in terms of roughness parameters using an optical profilometer. Then experiments were conducted using an inclined pin-on-plate sliding apparatus to identify the role of surface texture and its roughness parameters on coefficient of friction and transfer layer formation. In the experiments, a soft polymer (polypropylene) was used for the pin and hardened steel was used for the plate. Experiments were conducted at a sliding velocity of 2 minis in ambient conditions under both dry and lubricated conditions. The normal load was varied from 1 to 120 N during the tests. The morphologies of the worn surfaces of the pins and the formation of a transfer layer on the steel plate surfaces were observed using a scanning electron microscope. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, were controlled by the surface texture of the harder mating surfaces and were less dependent of surface roughness (R(a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. Among the various surface roughness parameters studied, the mean slope of the profile, Delta(a), was found to most accurately characterize variations in the friction and wear behavior. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose robust and scalable processes for the fabrication of floating gate devices using ordered arrays of 7 nm size gold nanoparticles as charge storage nodes. The proposed strategy can be readily adapted for fabricating next generation (sub-20 nm node) non-volatile memory devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural and charge density distribution studies have been carried out on a single crystal data of an ammonium borate, [C(10)H(26)N(4)][B(5)O(6)(OH)(4)](2), synthesized by solvothermal method. Further, the experimentally observed geometry is used for the theoretical charge density calculations using the B3LYP/6-31G** level of theory, and the results are compared with the experimental values. Topological analysis of charge density based on the Atoms in Molecules approach for B-O bonds exhibit mixed covalent/ionic character. Detailed analysis of the hydrogen bonds in the crystal structure in the ammonium borate provides insights into the understanding of the reaction pathways that net atomic charges and electrostatic potential isosurfaces also give additional such systems. could result in the formation of borate minerals. The input to evaluate chemical and physical properties in such systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extension of the supramolecular synthon-based fragment approach (SBFA) method for transferability of multipole charge density parameters to include weak supramolecular synthons is proposed. In particular, the SBFA method is applied to C-H center dot center dot center dot O, C-H center dot center dot center dot F, and F center dot center dot center dot F containing synthons. A high resolution charge density study has been performed on 4-fluorobenzoic acid to build a synthon library for C-H center dot center dot center dot F infinite chain interactions. Libraries for C-H center dot center dot center dot O and F center dot center dot center dot F synthons were taken from earlier work. The SBFA methodology was applied successfully to 2- and 3-fluorobenzoic acids, data sets for which were collected in a routine manner at 100 K, and the modularity of the synthons was demonstrated. Cocrystals of isonicotinamide with all three fluorobenzoic acids were also studied with the SBFA method. The topological analysis of inter- and intramolecular interaction regions was performed using Bader's AIM approach. This study shows that the SBFA method is generally applicable to generate charge density maps using information from multiple intermolecular regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase pure wurtzite GaN films were grown on Si (100) substrates by introducing a silicon nitride layer followed by low temperature GaN growth as buffer layers. GaN films grown directly on Si (100) were found to be phase mixtured, containing both cubic (beta) and hexagonal (alpha) modifications. The x-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) spectroscopy studies reveal that the significant enhancement in the structural as well as in the optical properties of GaN films grown with silicon nitride buffer layer grown at 800 degrees C when compared to the samples grown in the absence of silicon nitride buffer layer and with silicon nitride buffer layer grown at 600 degrees C. Core-level photoelectron spectroscopy of Si(x)N(y) layers reveals the sources for superior qualities of GaN epilayers grown with the high temperature substrate nitridation process. The discussion has been carried out on the typical inverted rectification behavior exhibited by n-GaN/p-Si heterojunctions. Considerable modulation in the transport mechanism was observed with the nitridation conditions. The heterojunction fabricated with the sample of substrate nitridation at high temperature exhibited superior rectifying nature with reduced trap concentrations. Lowest ideality factors (similar to 1.5) were observed in the heterojunctions grown with high temperature substrate nitridation which is attributed to the recombination tunneling at the space charge region transport mechanism at lower voltages and at higher voltages space charge limited current conduction is the dominating transport mechanism. Whereas, thermally generated carrier tunneling and recombination tunneling are the dominating transport mechanisms in the heterojunctions grown without substrate nitridation and low temperature substrate nitridation, respectively. (C) 2011 American Institute of Physics. [doi:10.1063/1.3658867]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When radiation of sufficiently high energy is incident on the surface of a semiconductor photocathode, electrons are excited from the valence band to the conduction band and these may contribute to the photocurrent. The photocurrent in a single-layer cathode is found to be small, because of collisions within the cathode material, the electron affinity condition, etc. It is observed that when a thin layer of n-type cesium antimonide (Cs3Sb) is deposited over a p-type layer of sodium potassium antimonide (Na2KSb), there occurs a sharp rise in the photocurrent. The causes for the dramatic increase in the photocurrent obtainable from a sodium potassium antimonide cathode, by depositing a thin layer of cesium antimonide are analyzed in this article. It has been shown that the interface between sodium potassium antimonide and cesium antimonide can result in lowering of the electron affinity to a level below the bottom of the conduction band of sodium potassium antimonide. The drift field that arises at the heterointerface enables the electrons to reach the surface, leading to the emission of almost all the photogenerated electrons within the cathode. The processes involved in photoemission from such a double-layer cathode are examined from a theoretical point of view. The spectral response of the two-layer cathode is also found to be better than that of a single-layer cathode.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large reduction in the leakage current behavior in (Ba, Sr)TiO3 (BST) thin films was observed by graded-layer donor doping. The graded doping was achieved by introducing La-doped BST layers in the grown BST films. The films showed a large decrease (about six orders of magnitude) in the leakage current in comparison to undoped films at an electric field of 100 kV/cm. The large decrease in leakage current was attributed to the formation of highly resistive layers, originating from compensating defect chemistry involved for La-doped films grown in oxidizing environment. Temperature-dependent leakage-current behavior was studied to investigate the conduction mechanism and explanations of the results were sought from Poole–Frenkel conduction mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have prepared crystalline nanowires (diameter ∼ 50 nm, length ∼ a few microns) of the charge-ordering manganite Pr0.5Ca0.5MnO3 using a low reaction temperature hydrothermal method and characterized them using x-ray diffraction, transmission electron microscopy, superconducting quantum interference device (SQUID) magnetometry and electron magnetic resonance measurements. While the bulk sample shows a charge ordering transition at 245 K and an antiferromagnetic transition at 175 K, SQUID magnetometry and electron magnetic resonance experiments reveal that in the nanowires phase, a ferromagnetic transition occurs at ∼ 105 K. Further, the antiferromagnetic transition disappears and the charge ordering transition is suppressed. This result is particularly significant since the charge order in Pr0.5Ca0.5MnO3 is known to be very robust, magnetic fields as high as 27 T being needed to melt it.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antiferroelectric lanthanum-modified PbZrO3 thin films with La contents between 0 and 6 at. % have been deposited on Pt(111)/Ti/SiO2/Si substrate by sol-gel route. On the extent of La-modification, maximum polarization (Pmax) and recoverable energy density (W) have been enhanced followed by their subsequent reduction. A maximum Pmax ( ∼ 0.54 C/m2 at ∼ 60 MV/m) as well as a maximum W ( ∼ 14.9 J/cc at ∼ 60 MV/m) have been achieved on 5% La modification. Both Pmax and W have been found to be strongly dependent on La-induced crystallographic orientations.