976 resultados para Irradiated seafood.
Resumo:
InGaN/GAN multiple quantum wells grown by metal-organic chemical vapor deposition were irradiated with the electron beam from a low energy accelerator. The electron irradiation induced a redshift by 50 meV in the photoluminescence spectra of the electron-irradiated InGaN/GaN quantum wells, irrespective of the exposure time to the electron beam which ranges from 10 to 1000s. The localization parameter extracted from the temperature-dependent photoluminescence spectra was found to increase in the Irradiated samples. Analysis of the intensity of the longitudinal optical phonon sidebands showed the enhancement of the exciton-phonon coupling, indicating that the excitons are more strongly localized in the irradiated InGaN wells. The change in the pholotuminescence spectra. In the irradiated InGa/GAN quantum wells were explained in terms of the increase of indium concentration in indium rich clusters induced by the electron irradiation (C) 2009 The Japan Society of Applied Physics
Resumo:
The effect of beta particles interaction on the optical properties of MOCVD grown GaN is reported. A significant change in luminescence properties of GaN is observed after exposing the material with 0.6 MeV beta particles with low dose of 10(12) cm(-2). The results obtained from photoluminescence measurements of irradiated GaN samples in low dose are found contradictory to those reported in literature for samples irradiated with heavy dose (> 10(15) cm(-2)) of electron. An increase in intensity of yellow luminescence has been observed with increasing dose of beta particles which is in disagreement to the already reported results in literature for heavily irradiated samples. A model has been proposed to sort out this inconsistency. The increase in YL intensity at low dose is attributed to the increase in concentration of VGaON complex whereas production of non-radiative VGaON clusters is assumed to justify the decrease in YL intensity at high dose.
Resumo:
We theoretically study the conducting electronic contribution to the cohesive force in a metallic nanowire irradiated under a transversely polarized external electromagnetic field at low temperatures and in the ballistic regime. In the framework of the free-electron model, we have obtained a time-dependent two-level electronic wavefunction by means of a unitary transformation. Using a thermodynamic statistical approach with this wavefunction, we have calculated the cohesive force in the nanowire. We show that the cohesive force can be divided into two components, one of which is independent of the electromagnetic field (static component), which is consistent with the existing results in the literature. The magnitude of the other component is proportional to the electromagnetic field strength. This extra component of the cohesive force is originally from the coherent coupling between the two lateral energy levels of the wire and the electromagnetic field.
Resumo:
Silicon-on-insulating multi-layer (SOIM) materials were fabricated by co-implantation of oxygen and nitrogen ions with different energies and doses. The multilayer microstructure was investigated by cross-sectional transmission electron microscopy. P-channel metal-oxide-semiconductor (PMOS) transistors and metal-semiconductor-insulator-semiconductor (MSIS) capacitors were produced by these materials. After the irradiated total dose reaches 3 x 10(5) rad (Si), the threshold voltage of the SOIM-based PMOS transistor only shifts 0.07 V, while thin silicon-on-insulating buried-oxide SIMOX-based PMOS transistors have a shift of 1.2V, where SIMOX represents the separated by implanted oxygen. The difference of capacitance of the SOIM-based MSIS capacitors before and after irradiation is less than that of the thin-box SIMOX-based MSIS capacitor. The results suggest that the SOIM materials have a more remarkable irradiation tolerance of total dose effect, compared to the thin-buried-oxide SIMOX materials.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We derive the generalized rate equation for the coupled quantum-dot (QD) system irradiated by a microwave field in the presence of a quantum point contact. It is shown that when a microwave field is tuned in resonance with the energy difference between the ground states of two QD's, the photon-assisted tunneling occurs and, as a result, the coupled QD system may be used as the single qubit. Furthermore, we show that the oscillating current through the detector decays drastically as the dephasing rate increases, indicating clearly the influence of the dephasing effect induced by the quantum point contact used as a detecting device.
Resumo:
Carbon ions were implanted into crystal Si to a concentration of (0.6-1.5)at% at room temperature. Some samples were pre-irradiated with S-29(i)+ ions, while others were not pre-irradiated. Then the two kinds of samples were implanted with C-12(+) ions simultaneously, and Si1-xCx alloys were grown by solid phase epitaxy with high-temperature annealing. The effects of preirradiation on the formation of Si1-xCx alloys were studied. If the dose of implanted C ion was less than that for amorphizing Si crystals, the implanted C atoms would like to combine with defects produced during implantation, and then it was difficult for Si1-xCx alloys to form after annealine, at 950 degreesC. Pre-irradiation was advantageous for Si1-xCx alloy formation. With the increase of C ion dose, the damage produced by C ions increased. Pre-irradiation was unfavorable for Si1-xCx, alloy formation. If the implanted C concentration was higher than that for solid phase epitaxy solution, only part of the implanted C atoms form Si1-xCx alloys and the effects of pre-irradiation could be neglected. As the annealing temperature was increased to 1050 degreesC, Si1-xCx alloys in both pre-irradiated and unpreirradiated samples of low C concentration remained, whereas most part of Si1-xCx alloys in samples with high C concentration vanished.
Resumo:
Being an established qualitative method for investigating presence of additional phases in single crystal materials, X-ray diffraction has been used widely to characterize their structural qualities and to improve the preparation techniques. Here quantitative X-ray diffraction analysis is described which takes into account diffraction geometry and multiplicity factors. Using double-crystal X-ray four-circle diffractometer, pole figures of cubic (002), {111} and hexagonal {10 (1) over bar0} and reciprocal space mapping were measured to investigate the structural characters of mixed phases and to obtain their diffraction geometry and multiplicity factors. The fractions of cubic twins and hexagonal inclusions were calculated by the integrated intensities of rocking curves of cubic (002), cubic twin {111}, hexagonal {10 (1) over bar0} and hexagonal {10 (1) over bar1}. Without multiplicity factors, the calculated results are portions of mixed phases in only one {111} plane of cubic GaN. Diffraction geometry factor can eliminate the effects of omega and X angles on the irradiated surface areas for different scattered planes. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
A novel method, based on an infrared absorption and neutron irradiation technique, has been developed for the determination of interstitial oxygen in heavily boron-doped silicon. The new procedure utilizes fast neutron irradiated silicon wafer specimens. On fast neutron irradiation, the free carriers of high concentration in silicon can be trapped by the irradiated defects and the resistivity increased. The resulting calibration curve for the measurement of interstitial oxygen in boron-doped silicon has been established on the basis of the annealing behaviour of irradiated boron-doped CZ silicon.
Resumo:
FD SOI MOSFETs with MESA and Irradiated FD SOI MOSFETs with LOCOS isolation usually show the edge effect, that is, the leakage current called hump is generated in the subthreshold region. According to different reasons for generating the edge effect, rounded corner process and BTS structure are applied to improve device performance. The results indicate that the above two methods are effective to reduce the edge effect and qualified devices are fabricated successfully.
Resumo:
The magnetic-type plasmon resonant of a metal-dielectric-metal nanocavity working at the wavelength of 1.55 mu m is explored, in which the upper layer is periodically patterned with metallic nanostrip arrays. In the dielectric film layer, the magnetic energy intensity is enhanced about 1700 times when irradiated with a p-polarized plane wave. We numerically studied the dispersion of the modes and the Q-value of this periodic cavity arrays. Q value is estimated about 18 and still has room for further improvement. It provides a new type of nanocavity that exhibits a strong magnetic response.
Resumo:
A synthesized photochromic compound-pyrrylfulgide-is prepared as a thin film doped in a polymethylmethacrylate (PMMA) matrix. Under irradiation by UV light, the film converts from the bleached state into a colored state that has a maximum absorption at 635 nm and is thermally stable at room temperature. When the colored state is irradiated by a linearly polarized 650 nm laser, the film returns to the bleached state; photoinduced anisotropy is produced during this process. Application of optical image processing methods using the photoinduced anisotropy of the pyrrylfulgide/PMMA film is described. Examples in non-Fourier optical image processing, such as contrast reversal and image subtraction and summation, as well as in Fourier optical image processing, such as low-pass filtering and edge enhancement, are presented. (c) 2006 Optical Society of America.
Resumo:
We report the observation of intense spontaneous emission of green light from LiF:F-2:F-3(+) centers in active channel waveguides generated in lithium fluoride crystals by near-infrared femtosecond laser radiation. While irradiating the crystal at room temperature with 405 nm light from a laser diode, yellow and green emission was seen by the naked eye. Stripe waveguides were fabricated by translating the crystal along the irradiated laser pulse, and their guiding properties and fluorescence spectra at 540 nm demonstrated. This single-step process inducing a waveguide structure offers a good prospect for the development of a waveguide laser in bulk LiF crystals.
Resumo:
Neutron irradiated high resistivity (4-6 kOMEGA-cm) silicon detectors in the neutron fluence (PHI(n)) range of 5 X 10(11) n/cm2 to 1 X 10(14) n/cm2 have been studied using a laser deep level transient spectroscopy (L-DLTS). It has been found that the A-center (oxygen-vacancy, E(c) = 0.17 eV) concentration increases with neutron fluence, reaching a maximum at PHI(n) almost-equal-to 5 X 10(12) n/cm2 before decreasing with PHI(n). A broad peak has been found between 200 K and 300 K, which is the result of the overlap of three single levels: the V-V- (E(c) = 0.38 eV), the E-center (P-V, E(c) = 0.44 eV), and a level at E(c) = 0.56 eV that is probably V-V0. At low neutron fluences (PHI(n) < 5 X 10(12) n/cm2), this broad peak is dominated by V-V- and the E-centers. However, as the fluence increases (PHI(n) greater-than-or-equal-to 5 X 10(12) n/cm2), the peak becomes dominated by the level of E(c) = 0.56 eV.