970 resultados para Ionising radiation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. The adaptive radiation of fishes into benthic (littoral) and pelagic (lentic) morphs in post-glaciallakes has become an important model system for speciation. Although these systems are well stud-ied, there is little evidence of the existence of morphs that have diverged to utilize resources in theremaining principal lake habitat, the profundal zone.
2. Here, we tested phenotype-environment correlations of three whitefish (Coregonus lavaretus)morphs that have radiated into littoral, pelagic and profundal niches in northern Scandinavianlakes. We hypothesized that morphs in such trimorphic systems would have a morphology adaptedto one of the principal lake habitats (littoral, pelagic or profundal niches). Most whitefish popula-tions in the study area are formed by a single (monomorphic) whitefish morph, and we furtherhypothesized that these populations should display intermediate morphotypes and niche utiliza-tion. We used a combination of traditional (stomach content, habitat use, gill raker counts) andmore recently developed (stable isotopes, geometric morphometrics) techniques to evaluate pheno-type-environment correlations in two lakes with trimorphic and two lakes with monomorphicwhitefish.
3. Distinct phenotype-environment correlations were evident for each principal niche in whitefishmorphs inhabiting trimorphic lakes. Monomorphic whitefish exploited multiple habitats, hadintermediate morphology, displayed increased variance in gillraker-counts, and relied significantlyon zooplankton, most likely due to relaxed resource competition.
4. We suggest that the ecological processes acting in the trimorphic lakes are similar to each other,and are driving the adaptive evolution of whitefish morphs, possibly leading to the formation ofnew species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We irradiated different cellular compartments and measured changes in expression of the FOS gene at the mRNA and protein levels. [H-3]Thymidine and tritiated water were used to irradiate the nucleus and the whole cell, respectively. I-125-Concanavalin A binding was used to irradiate the cell membrane differentially. Changes in FOS mRNA and protein levels were measured using semi-quantitative RT-PCR and SDS-PAGE Western blotting, respectively, Irradiation of the nucleus or the whole cell at a dose rate of 0.075 Gy/h caused no change in the level of FOS mRNA expression, but modestly (1.5-fold) induced FOS protein after 0.5 h, Irradiation of the nucleus at a dose rate of 0.43 Gy/h induced FOS mRNA by 1.5-fold after 0.5 h, but there was no significant effect after whole-cell irradiation. FOS protein was transiently induced 2.5-fold above control levels 0.5 h after a 0.43-Gy/h exposure of the nucleus or the whole cell. Irradiation of the cell membrane at a dose rate of 1.8 Gy/h for up to 2 h caused no change in the levels of expression of FOS mRNA or protein, but a dose rate of 6.8 Gy/h transiently increased the level of FOS mRNA S-fold after 0.5 h, These data demonstrate the complexity of the cellular response to radiation-induced damage at low doses. The lack of quantitative agreement between the transcript and protein levels for FOS suggests a role for posttranscriptional regulation. (C) 2000 by Radiation Research Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new ion radiation-pressure acceleration regime, the "leaky light sail," is proposed which uses sub-skin-depth nanometer foils irradiated by circularly polarized laser pulses. In the regime, the foil is partially transparent, continuously leaking electrons out along with the transmitted laser field. This feature can be exploited by a multispecies nanofoil configuration to stabilize the acceleration of the light ion component, supplementing the latter with an excess of electrons leaked from those associated with the heavy ions to avoid Coulomb explosion. It is shown by 2D particle-in-cell simulations that a monoenergetic proton beam with energy 18 MeV is produced by circularly polarized lasers at intensities of just 10(19) W/cm(2). 100 MeV proton beams are obtained by increasing the intensities to 2 x 10(20) W/cm(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new regime is described for radiation pressure acceleration of a thin foil by an intense laser beam of above 10(20) W cm(-2). Highly monoenergetic proton beams extending to giga-electron-volt energies can be produced with very high efficiency using circularly polarized light. The proton beams have a very small divergence angle (< 4 degrees). This new method allows the construction of ultra-compact proton and ion accelerators with ultra-short particle bursts.