917 resultados para Impulsive Loading
Resumo:
A new method of measuring heat of desorption is proposed in this Letter. The principle of the method is to measure the amount of mass released when a controlled amount of energy is supplied directly to a solid adsorbent. This is in contrast to conventional methods such as microcalorimetry, where heat released upon adsorption is measured. In this method, a quantified heat supply is generated by passing a de current through a carbon pellet, which is equilibrated with a gas phase confined in a closed vessel. As a consequence of the heating, the particle temperature is increased, resulting in partial desorption of adsorbed molecules. The variations of pellet temperature and the system pressure with respect to time are used to determine the heat of desorption as a function of loading.
Resumo:
The Dubinin-Radushkevich (DR) equation is widely used for description of adsorption in microporous materials, especially those of a carbonaceous origin. The equation has a semi-empirical origin and is based on the assumptions of a change in the potential energy between the gas and adsorbed phases and a characteristic energy of a given solid. This equation yields a macroscopic behaviour of adsorption loading for a given pressure. In this paper, we apply a theory developed in our group to investigate the underlying mechanism of adsorption as an alternative to the macroscopic description using the DR equation. Using this approach, we are able to establish a detailed picture of the adsorption in the whole range of the micropore system. This is different from the DR equation, which provides an overall description of the process. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper addresses the current status of the various diffusion theories for surface diffusion in the literature. The inadequacy of these models to explain the surface diffusion of many hydrocarbons in microporous activated carbon is shown in this paper. They all can explain the increase of the surface diffusivity (D-mu) with loading, but cannot explain the increase of the surface permeability (D(mu)partial derivativeC(mu)/partial derivativeP) with loading as observed in our data of diffusion of hydrocarbons in activated carbon, even when the surface heterogeneity is accounted for in those models. The explanation for their failure was presented, and we have put forward a theory to explain the increase of surface diffusion permeability with loading. This new theory assumes the variation of the activation energy for surface diffusion with surface loading, and it is validated with diffusion data of propane, n-butane, n-hexane, benzene and ethanol in activated carbon. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper presents the comparison of surface diffusivities of hydrocarbons in activated carbon. The surface diffusivities are obtained from the analysis of kinetic data collected using three different kinetics methods- the constant molar flow, the differential adsorption bed and the differential permeation methods. In general the values of surface diffusivity obtained by these methods agree with each other, and it is found that the surface diffusivity increases very fast with loading. Such a fast increase can not be accounted for by a thermodynamic Darken factor, and the surface heterogeneity only partially accounts for the fast rise of surface diffusivity versus loading. Surface diffusivities of methane, ethane, propane, n-butane, n-hexane, benzene and ethanol on activated carbon are reported in this paper.
Resumo:
In this paper, we develop a theory for diffusion and flow of pure sub-critical adsorbates in microporous activated carbon over a wide range of pressure, ranging from very low to high pressure, where capillary condensation is occurring. This theory does not require any fitting parameter. The only information needed for the prediction is the complete pore size distribution of activated carbon. The various interesting behaviors of permeability versus loading are observed such as the maximum permeability at high loading (occurred at about 0.8-0.9 relative pressure). The theory is tested with diffusion and flow of benzene through a commercial activated carbon, and the agreement is found to be very good in the light that there is no fitting parameter in the model. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Service quality is assessed by customers along the dimensions of staff conduct, credibility, communication, and access to teller services. Credibility and staff conduct emerge as the highest loading first-order factors. This highlights the significance of rectifying mistakes while keeping customers informed, and employing branch staff that are responsive and civilized in their conduct. Discovery of a valid second-order factor, namely, overall customer service quality, underscores the importance of providing quality service across all its dimensions. For example, if the bank fails to rectify mistakes and keep customers informed but excels in all other dimensions, its overall customer service quality can still be rated poorly.
Resumo:
The Brisbane River and Moreton Bay Study, an interdisciplinary study of Moreton Bay and its major tributaries, was initiated to address water quality issues which link sewage and diffuse loading with environmental degradation. Runoff and deposition of fine-grained sediments into Moreton Bay, followed by resuspension, have been linked with increased turbidity and significant loss of seagrass habitat. Sewage-derived nutrient enrichment, particularly nitrogen (N), has been linked to algal blooms by sewage plume maps. Blooms of a marine cyanobacterium, Lyngbya majuscula, in Moreton Bay have resulted in significant impacts on human health (e.g., contact dermatitis) and ecological health (e.g., seagrass loss), and the availability of dissolved iron from acid sulfate soil runoff has been hypothesised. The impacts of catchment activities resulting in runoff of sediments, nutrients and dissolved iron on the health of the Moreton Bay waterways are addressed. The Study, established by 6 local councils in association with two state departments in 1994, forms a regional component of a national and state program to achieve ecologically sustainable use of the waterways by protecting and enhancing their health, while maintaining economic and social development. The Study framework illustrates a unique integrated approach to water quality management whereby scientific research, community participation and the strategy development were done in parallel with each other. This collaborative effort resulted in a water quality management strategy which focuses on the integration of socioeconomic and ecological values of the waterways. This work has led to significant cost savings in infrastructure by providing a clear focus on initiatives towards achieving healthy waterways. The Study's Stage 2 initiatives form the basis for this paper.
Resumo:
Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.
Resumo:
Increased nitrogen loading has been implicated in eutrophication occurrences worldwide. Much of this loading is attributable to the growing human population along the world's coastlines. A significant component of this nitrogen input is from sewage effluent, and delineation of the distribution and biological impact of sewage-derived nitrogen is becoming increasingly important. Here, we show a technique that identifies the source, extent and fate of biologically available sewage nitrogen in coastal marine ecosystem. This method is based on the uptake of sewage nitrogen by marine plants and subsequent analysis of the sewage signature (elevated delta N-15) in plant tissues. Spatial analysis is used to create maps of delta N-15 and establish coefficient of variation estimates of the mapped values. We show elevated delta N-15 levels in marine plants near sewage outfalls in Moreton Bay, Australia, a semi-enclosed bay receiving multiple sewage inputs. These maps of sewage nitrogen distribution are being used to direct nutrient reduction strategies in the region and will assist in monitoring the effectiveness of environmental protection measures. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
FILTER is an innovative, CSIRO developed system for treating effluent using high rate land application and subsequent effluent recapture via a closely spaced, subsurface drainage network. We report on the summer performance of a FILTER system established in a subtropical environment on a relatively impermeable swelling clay soil underlain by a deep regional water table. Using secondary treated sewage effluent, the FILTER system produced effluent of tertiary nutrient standards (less than or equal to5 mg/L TN; less than or equal to1 mg/L TP), with salinity levels suitable for subsequent irrigation reuse (EC less than or equal to2.5 dS/m). Removal of faecal coliforms was considerably less effective. The hydraulic loading rate achieved was about two and a half times larger than conventional irrigation demand, but this was associated with high deep percolation losses (e 3 mm/day). Comparisons are made with the original FILTER system developed and tested by Jayawardane et al. in temperate Australia. Suggestions are made for modifications to, and further testing of FILTER in a subtropical environment.
Resumo:
This investigation demonstrates the capability of a bench-scale sequencing batch reactor (SBR) to biodegrade an inhibitory substrate at a high loading rate. A SBR loading rate of 3.12 kg phenol.m(-3)d(-1) (2.1 g COD.g(-1) MLVSS d(-1)) with a COD removal efficiency of 97% at a SRT of 4 days and a HRT of 10 hours was achieved; this rate was not reached before. The SBR was operated at 4 hours cycle, including 3 hours react phase. The synthetic wastewater of 1300 mg/L phenol was the sole carbon source. Oxygen uptake rates (OUR) were monitored in-situ at various stages of the SBR. The oxygen mass transfer coefficient, K(L)a, of 12.6 h(-1) was derived from respirometry. Use of respirometry in SBR aided the tracking of the soluble substrate through OUR.
Resumo:
Tissue type plasminogen activator is available, through recombinant technology, for thrombolytic use as alteplase. Alteplase is relatively clot specific and should cause less bleeding side effects than the non-specific agents such as streptokinase. Alteplase has been used successfully in evolving myocardial infarction (MI) to reopen occluded coronary arteries. It is probably equally effective or superior to streptokinase in opening arteries and reducing mortality in Mi. Alteplase is most effective when given early in Mi and is probably ineffective when given 12 h after the onset of symptoms. The effectiveness of alteplase in Mi can be increased by front loading with a bolus of 15 mg, followed by an infusion of 50 mg over 30 min and 35 mg over 60 min. Percutaneous transluminal coronary angioplasty or stenting is associated with a greater patency and lower rates of serious bleeding, recurrent ischaemia and death than alteplase in MI and is likely to take over from alteplase as the standard Mi treatment. A reduced dose of alteplase to increase coronary artery patency prior to angioplasty may be useful in Mi. An exciting new indication for the use of alteplase is in stroke, where it has become the first beneficial intervention. Alteplase is used to reopen occluded cerebral vessels but is associated with an increased risk of intracerebral haemorrhage. Alteplase is beneficial if given within 3 h of the onset of stroke but not after this time period. Therefore, the next challenge is to increase the percentage of people being diagnosed and treated within this period. Clinical trials have not established a role for alteplase in the treatment of acute coronary syndromes or deep vein thrombosis. However, alteplase is useful in treating pulmonary thromboembolism and peripheral vascular disease.
Resumo:
The standard approach to preventing acute coronary syndromes (ACSs)has been to inhibit platelet aggregation with aspirin and to inhibit blood coagulation with low molecular-weight heparin (LMWH). Even with this combination there is still a substantial short and long-term cardiovascular risk. The Clopidogrel in Unstable angina to prevent Recurrent Events (CURE) trial [1] compared clopidogrel plus aspirin against aspirin alone in patients with ACSs. The clopidogrel regimen was a loading dose of 300 mg p.o. followed by 75 mg/day and the recommended dose of aspirin was 75 - 325 mg/day. The first primary outcome was a composite of death from cardiovascular causes, non-fatal myocardial infarction (MI) or stroke and this occurred significantly less often in the clopidogrel than the placebo group (9.3 vs. 11.4%). Although there were more clopidogrel patients with life-threatening bleeding (clopidogrel 2.2%, placebo 1.8%), this represented GI haemorrhages and bleeding at sites of arterial puncture rather than fatal bleeding. This trial suggests a role for clopidogrel in the long-term treatment of ACSs
Resumo:
Ha-Ras and Ki-Ras have different distributions across plasma membrane microdomains. The Ras C-terminal anchors are primarily responsible for membrane microlocalization, but recent work has shown that the interaction of Ha-Ras with lipid rafts is modulated by GTP loading via a mechanism that requires the hypervariable region (HVR). We have now identified two regions in the HVR linker domain that regulate Ha-Ras raft association. Release of activated Ha-Ras from lipid rafts is blocked by deleting amino acids 173-179 or 166-172. Alanine replacement of amino acids 173-179 but not 166-172 restores wild type micro-localization, indicating that specific N-terminal sequences of the linker domain operate in concert with a more C-terminal spacer domain to regulate Ha-Ras raft association. Mutations in the linker domain that confine activated Ha-RasG12V to lipid rafts abrogate Raf-1, phosphoinositide 3-kinase, and Akt activation and inhibit PC 12 cell differentiation. N-Myristoylation also prevents the release of activated Ha-Ras from lipid rafts and inhibits Raf-1 activation. These results demonstrate that the correct modulation of Ha-Ras lateral segregation is critical for downstream signaling. Mutations in the linker domain also suppress the dominant negative phenotype of Ha-RasS17N, indicating that HVR sequences are essential for efficient interaction of Ha-Ras with exchange factors in intact cells.
Resumo:
Calcium precipitation can have a number of effects on the performance of high-rate anaerobic performance including cementing of the sludge bed, limiting diffusion, and diluting the active biomass. The aim of this study was to observe the influence of precipitation in a stable full-scale system fed with high-calcium paper factory wastewater. Granules were examined from an upflow anaerobic sludge blanket reactor (volume 1,805 m(3)) at a recycled paper mill with a loading rate of 5.7-6.6 kgCOD.m(-3).d(-1) and influent calcium concentration of 400-700 gCa(.)m(-3). The granules were relatively small (1 mm), with a 200-400 mum core of calcium precipitate as observed with energy dispersive X-ray spectroscopy. Compared to other granules, Methanomicrobiales not Methanobacteriales were the dominant hydrogen or formate utilisers, and putative acidogens were filamentous. The strength of the paper mill fed granules was very high when compared to granules from other full-scale reactors, and a partial linear correlation between granule strength and calcium concentration was identified.