964 resultados para ISM: MOLECULES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Changes induced by PA on nucleic acid (NA) conformation and synthesis is proven to be a major reason for PA essentiality (1-3). However, PA interactions with other polyanions, for instance polyanionic membrane lipid bilayers and glyosaminoglycans have received less attention (3-4). The functional importance of these interactions still is an obscure but interesting area of cell and molecular biology, especially in mammalian cells for which specific PA transport systems are not fully characterized (5). In mammals, activity and turnover of the polyamine (PA) synthesis key enzyme is controlled by a set of proteins: Antizymes (OAZ1-3) and antizyme inhibitors (AZIN1 and 2). It is demonstrated that AOZ modulate polyamine uptake (6), and that PA transport to mitochondria is linked to the respiratory chain state and modulates mitochondrial permeability transition (7). Antizyme expression variants have been located in mitochondria, being proposed as a proapoptotic factor (7-8). AZIN 2 is only expressed in a reduced set of tissues that includes mast cells, where it is associated to mast cell granules membrane (9). This fact, together to the abnormalities observed in bone marrow derived mast cell granules when they are differentiated under restricted PA synthesis conditions (10 and unpublished results), point out to important roles of PA and their related proteins in structure and function of mast cell granules. We will also present novel biophysical results on tripartite interactions of PA that remark the interest of the characterization of PA interactions with lipid bilayers for biomedicine and biotechnology. Thus, the information reported in this paper integrates previously reported information with our still unpublished results, all indicating that PA and their related proteins also are important factors for structure and dynamics of biological membranes and their associated functions essential in human physiology; for instance, solute interchange with the environment (uptake and secretion), oxidative metabolism and apoptosis. The importance of these involved processes for human homeostasis claim for further research efforts. 1. Ruiz-Chica J, Medina MA, Sánchez-Jiménez F and Ramírez FJ (2001) Fourier Transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophysical J. 80:443-454. 2. Lightfoot HL, Hall J (2014) Endogenous polyamine function--the RNA perspective. Nucleic Acids Res. 42:11275-11290. 3. Igarashi K, Kashiwagi K (2010) Modulation of cellular function by polyamines. Int J Biochem Cell Biol. 42:39-51. 4. Finger S, Schwieger C, Arouri A, Kerth A, Blume A (2014) Interaction of linear polyamines with negatively charged phospholipids: the effect of polyamine charge distance. Biol Chem. 395:769-778. 5. Poulin R, Casero RA, Soulet D. (2012) Recent advances in the molecular biology of metazoan polyamine transport. Amino Acids. 42:711-723. 6. Kahana C (2009) Regulation of cellular polyamine levels and cellular proliferation by antizyme and antizyme inhibitor. Essays Biochem. 4:47-61. 7. Agostinelli E, Marques MP, Calheiros R, Gil FP, Tempera G, Viceconte N, Battaglia V, Grancara S, Toninello A (2010) Polyamines: fundamental characters in chemistry and biology. Amino Acids 38:393-403. 8. Liu GY, Liao YF, Hsu PC, Chang WH, Hsieh MC, Lin CY, Hour TC, Kao MC, Tsay GJ, Hung HC (2006) Antizyme, a natural ornithine decarboxylase inhibitor, induces apoptosis of haematopoietic cells through mitochondrial membrane depolarization and caspases' cascade. Apoptosis 11:1773-1788. 9. Kanerva K, Lappalainen J, Mäkitie LT, Virolainen S, Kovanen PT, Andersson LC (2009). Expression of antizyme inhibitor 2 in mast cells and role of polyamines as selective regulators of serotonin secretion. PLoS One 31:e6858. 10. García-Faroldi G, Rodríguez CE, Urdiales JL, Pérez-Pomares JM, Dávila JC, Pejler G, Sánchez-Jiménez F, Fajardo I (2010) Polyamines are present in mast cell secretory granules and are important for granule homeostasis. PLoS One 30:e15071.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quorum sensing (QS) is a process that allows bacteria to sense the population density of cells around them by communicating with each other via autoinducer molecules. This cross-communication is crucial in the regulation of bacterial processes such as bioluminescence, virulence, and biofilm formation. Previous research by Milburn and Makemson on Vibrio harveyi suggested that in addition of the known biosynthesis of three well-characterized autoinducers, dozens of unknown molecules are also produced and released to the environment by V. harveyi. This study was performed using electrospray tandem mass spectrometry with the purpose of detection and characterization of the extracellular molecules produced by V. harveyi, and assessment of their relationship to QS. A total of 11 molecules were characterized, from which three could be related to QS. These findings provide a glimpse of the nature of novel secondary metabolites produced by V. harveyi and provide the groundwork for further research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until recently the dynamical evolution of the interstellar medium (ISM) was simu- lated using collisional ionization equilibrium (CIE) conditions. However, the ISM is a dynamical system, in which the plasma is naturally driven out of equilibrium due to atomic and dynamic processes operating on different timescales. A step forward in the field comprises a multi-fluid approach taking into account the joint thermal and dynamical evolutions of the ISM gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Levulinic acid (LA) is a polyfunctional molecule obtained from biomass. Because of its structure, the United States Department of energy classified LA as one of the top 12 building block chemicals. Typically, it is valorized through chemical reduction to γ-valerolactone (GVL). It is usually done with H2 in batch systems with high H2 pressures and noble metal catalysts, making it expensive and less applicable. Therefore, alternative approaches such as catalytic transfer hydrogenation (CTH) through the Meerwein–Ponndorf–Verley (MPV) reaction over heterogeneous catalysts have been studied. This uses organic molecules (alcohols) which act as a hydride transfer agent (H-donor), to reduce molecules containing carbonyl groups. Given the stability of the intermediate, reports have shown the batch liquid-phase CTH of levulinate esters with secondary alcohols, and remarkable results (GVL yield) have been obtained over ZrO2, given the need of a Lewis acid (LASites) and base pair for CTH. However, there were no reports of the continuous gas-phase CTH of levulinate esters. Therefore, high surface area ZrO2 was tested for gas-phase CTH of methyl levulinate (ML) using ethanol, methanol and isopropanol as H-donors. Under optimized conditions with ethanol (250 ℃), the reaction is selective towards GVL (yield 70%). However, heavy carbonaceous materials over the catalyst surface progressively blocked LASites changing the chemoselectivity. The in situ regeneration of the catalyst permitted a partial recovery of the LASites and an almost total recovery of the initial catalytic behavior, proving the deactivation reversible. Tests with methanol were not promising (ML conversion 35%, GVL yield 4%). As expected, using isopropanol provided complete conversion and a GVL yield of 80%. The reaction was also tested using bioethanol derived from agricultural waste. In addition, a preliminary study was performed for the hydrogenolysis of polyols to produce bioethanol, were Pd-Fe catalyst promoted the ethanol selective (37%) hydrogenolysis of glycerol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cancer represents one of the most relevant and widespread diseases in the modern age. In this context, integrin receptors are important for the interactions of cells with extracellular matrix and for the development of both inflammation and carcinogenic phenomena. There are many tricks to improve the bioactivity and receptor selectivity of exogenous ligands; one of these is to integrate the amino acid sequence into a cyclic peptide to restrict its conformational space. Another approach is to develop small peptidomimetic molecules in order to enhance the molecular stability and open the way to versatile synthetic strategies. Starting from isoxazoline-based peptidomimetic molecules we recently reported, in this thesis we are going to present the synthesis of new integrin ligands obtained by modifying or introducing appendages on already reported structures. Initially, we are going to introduce the synthesis of linear and cyclic α-dehydro-β-amino acids as scaffolds for the preparation of bioactive peptidomimetics. Subsequently, we are going to present the construction of small molecule ligands (SMLs) based delivery systems performed starting from a polyfunctionalised isoxazoline scaffold, whose potency towards αVβ3 and α5β1 integrins has already been established by our research group. In the light of these results and due to the necessity to understand the behaviour of a single enantiomer of the isoxazoline-based compounds, the research group decided to synthesise the enantiopure heterocycle using a 1,3-dipolar cycloaddiction approach. Subsequently, we are going to introduce the synthesis of a Reporting Drug Delivery System composed by a carrier, a first spacer, a linker, a self-immolative system, a second spacer and a latent fluorophore. The last part of this work will describe the results obtained during the internship abroad in Prof. Aggarwal’s laboratory at the University of Bristol. The project was focused on the Mycapolyol A synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the different types of breast cancer (BC), the estrogen receptor positive (ER+) subtype, which requires estrogens for its growth and proliferation, is the most common, while triple negative BC, characterized by the absence of ER, progesterone receptor and human epidermal growth factor receptor 2, often leads to poor prognosis. First-line therapies for the treatment of ER+ BC act either by suppressing estrogen production, through the inhibition of aromatase (AR) enzyme, or by blocking estrogen prooncogenic activity, via the modulation/degradation of ERs. The serious side effects and the intrinsic or acquired resistance phenomena that arise with prolonged use of these drugs limit their therapeutic application, stimulating the search for new strategies to face this disease. In this context, the development of dual acting aromatase inhibitors, able to target both the orthosteric and the recently identified allosteric pockets of AR could be an opportunity to fight ER+ BC. Another promising strategy could be the development of multitarget compounds, targeting both AR and ERs. In this scenario, here we designed and synthesized two series of new xanthones or more flexible benzophenones as potential dual acting aromatase inhibitors. Moreover, inspired from tamoxifen metabolites and a literature compound endowed with activity on both AR and ER, different structurally related series of potential multitarget compounds were developed. The biological results showed that some of the new molecules were promising candidates for further development. It was recently observed that the lately discovered histamine H4 receptor is expressed in human breast tissue, displaying a key role in biological processes mediated by histamine such as cell proliferation, senescence, and apoptosis in malignant cells, representing a potential target in triple negative BC. Thus, a broad series of methyl quinazoline sulfonamides, carrying different functional groups on the sulfonamide moiety, were designed and synthesized as potential H4 receptor ligands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of omic data production has opened many new perspectives in the quest for modelling complexity in biophysical systems. With the capability of characterizing a complex organism through the patterns of its molecular states, observed at different levels through various omics, a new paradigm of investigation is arising. In this thesis, we investigate the links between perturbations of the human organism, described as the ensemble of crosstalk of its molecular states, and health. Machine learning plays a key role within this picture, both in omic data analysis and model building. We propose and discuss different frameworks developed by the author using machine learning for data reduction, integration, projection on latent features, pattern analysis, classification and clustering of omic data, with a focus on 1H NMR metabolomic spectral data. The aim is to link different levels of omic observations of molecular states, from nanoscale to macroscale, to study perturbations such as diseases and diet interpreted as changes in molecular patterns. The first part of this work focuses on the fingerprinting of diseases, linking cellular and systemic metabolomics with genomic to asses and predict the downstream of perturbations all the way down to the enzymatic network. The second part is a set of frameworks and models, developed with 1H NMR metabolomic at its core, to study the exposure of the human organism to diet and food intake in its full complexity, from epidemiological data analysis to molecular characterization of food structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The experimental projects discussed in this thesis are all related to the field of artificial molecular machines, specifically to systems composed of pseudorotaxane and rotaxane architectures. The characterization of the peculiar properties of these mechano-molecules is frequently associated with the analysis and elucidation of complex reaction networks; this latter aspect represents the main focus and central thread tying my thesis work. In each chapter, a specific project is described as summarized below: the focus of the first chapter is the realization and characterization of a prototype model of a photoactivated molecular transporter based on a pseudorotaxane architecture; in the second chapter is reported the design, synthesis, and characterization of a [2]rotaxane endowed with a dibenzylammonium station and a novel photochromic unit that acts as a recognition site for a DB24C8 crown ether macrocycle; in the last chapter is described the synthesis and characterization of a [3]rotaxane in which the relative number of rings and stations can be changed on command.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The properties of the mitochondrial F1FO-ATPase activated by the natural cofactor Mg2+ or by Ca2+, were studied, mainly on heart mitochondria from swine, widely used in translational medicine. The Ca2+ driven conformational changes in the F1FO-ATPase form the mitochondrial permeability transition pore (mPTP), which triggers regulated cell death and is involved in severe pathologies. The Ca2+-activated F1FO-ATPase hydrolyzes ATP with kinetics slightly different from those of the Mg2+-ATPase. Known F1-ATPase inhibitors inhibit both the Ca2+-activated F1FO-ATPase and the mPTP formation strengthening the molecular link between them. The different Gd3+ effects on the Ca2+- and Mg2+-activated F1FO-ATPases confirm their difference as also phenylglyoxal which preferentially inhibits the Ca2+-activated F1FO-ATPase. The effects of phenylarsine and dibromobimane, which interact with differently distant Cys thiols, show that mPTP opening is ruled by nearby or distant dithiols. Bergamot polyphenols and melatonin inhibit the mPTP and ROS formation. H2S, a known cardiovascular protector, unaffects the F1FO-ATPase, but inhibits Ca2+ absorption and indirectly the mPTP, both in swine heart and mussel midgut gland mitochondria. New generation triazoles inhibit the Ca2+-activated F1FO-ATPase and the mPTP, but unaffect the Mg2+-activated F1FOATPase. In parallel, the energy metabolism was investigated in mammalian cells. In boar sperm ATP is mainly produced by mitochondrial oxidative phosphorylation (OXPHOS), even if it decreases over time because of less active mitochondria. Insufficient ATP may induce sperm dysfunction. Also, canine mesenchymal stem cells rely on OXPHOS; those from umbilical cord which produce more ATP than those from adipose tissue, seem preferable for transplant studies. The intestinal porcine enterocyte cell line IPEC-J2, used for human gut research, responds to different fetal bovine serum concentrations by remodeling OXPHOS without altering the bioenergetic parameters. The IPEC-J2 bioenergetics is modulated by Vitamin K vitamers. These data shoulder cell bioenergetics as precious tool for medical research.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the study of restricted rotation bonds in organic compounds has aroused increasing interest. The reason is that this characteristic can lead to obtaining new properties in organic compounds. In this research thesis, an intense investigation was carried out using DFT calculations and experimental evaluation of the barriers to rotational energies, in order to discover new properties deriving from the restricted rotation bonds. Research has been developed in various fields of organic chemistry, ranging from drugs (the atropisomeric atorvastatin in Chapter 3) to luminescent compounds (aryls amino borane in Chapter 4). Furthermore, an organocatalytic central to axial conversion mechanism was investigated through DFT calculations, finding out interesting outcomes (Chapter 5). Finally, a project in collaboration with Dr. Farran and Prof. Vanthuyne of the Aix-Marseille University was done to investigate the interactions in transition states of rotational barriers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rotational and ro-vibrational spectroscopy analysis of selected molecules of astrophysical importance, namely formaldehyde, mono-deuterated hydrogen sulfide, cyanoacetylene, deuterated cyanoacetylene, aminoacetonitrile, allylimine, and 2-aza-1,3-butadiene, has been presented in this thesis. For formaldehyde and mono-deuterated hydrogen sulfide, which are well-known interstellar molecules, a detailed Measured Active Rotational–Vibrational Energy Levels (MARVEL) analysis has been performed. For both of them, the MARVEL approach has been used to accurately derive the rotational and ro-vibrational energy levels from the experimental data available in the literature combined with new millimeter-wave measurements. Overall, the MARVEL analysis span a huge frequency range, from millimeter-wave to infrared (IR). For allylimine and 2-aza-1,3-butadiene, the pure rotational spectrum has been extended to the millimeter-wave region. The outcome of these two studies is the derivation of very accurate spectroscopic parameters that allow the accurate prediction of their rotational transitions over a large frequency range. For allylimine, this line catalog allowed the tentative detection of two isomers of allylimine (Ta and Ts) towards the G+0.693 molecular cloud. In addition to rotational spectroscopy, high-resolution IR spectra of interstellar molecules play also of pivotal role for the exploration of astromomical objects. For these reasons, high-resolution IR spectra of cyanoacetylene, deuterated cyanoacetylene, and aminoacetonitrile have been investigated. The precise spectroscopic constants of several vibrational excited states of these three molecules have been derived from the assignment of newly recorded IR spectra. Given the fact that all these three molecules are potentially present in Titan’s atmosphere, their ro-vibrational transitions can be considered unvaluable tools for their search, which might also be extended to other planetary atmospheres.