1000 resultados para Frequency changers
Resumo:
Frequency upconversion fluorescence property of Er3+-doped oxychloride germanate glass is investigated. Intense green and red emissions centred at 525, 546, and 657nm, corresponding to the transitions H-2(11/2) -> I-4(15/2), S-4(3/2) -> 4I(15/2), and F-4(9/2) -> I-4(15/2), respectively, were simultaneously observed at room temperature. The quadratic dependence of the 525, 546, and 657nm emissions on excitation power indicates that a two-photon absorption process occurs under 975nm laser diode (LD) excitation. The Raman spectrum investigation indicates that oxychloride germanate glass has the maximum phonon energy at similar to 805 cm(-1). The thermal stability of this oxychloride germanate glass is evaluated by differential scanning calorimetry, and thermal stability factor Delta T (Delta T = T-x-T-g) is 187 degrees C. Intense upconversion luminescence and good thermal stability indicate that Er3+-doped oxychloride germanate glass is a promising upconversion laser material.
Thermal stability and frequency up-conversion properties of Er3+-doped oxyfluoride tellurite glasses
Resumo:
In many micro- and nano-scale technological applications high sensitivity displacement sensors are needed, especially in ultraprecision metrology and manufacturing. In this work a new way of sensing displacement based on radio frequency resonant cavities is presented and experimentally demonstrated using a first laboratory prototype. The principle of operation of the new transducer is summarized and tested. Furthermore, an electronic interface that can be used together with the displacement transducer is designed and proved. It has been experimentally demonstrated that very high and linear sensitivity characteristic curves, in the range of some kHz/nm; are easily obtainable using this kind of transducer when it is combined with a laboratory network analyzer. In order to replace a network analyzer and provide a more affordable, self-contained, compact solution, an electronic interface has been designed, preserving as much as possible the excellent performance of the transducer, and turning it into a true standalone positioning sensor. The results obtained using the transducer together with a first prototype of the electronic interface built with cheap discrete elements show that positioning accuracies in the micrometer range are obtainable using this cost-effective solution. Better accuracies would also be attainable but using more involved and costly electronics interfaces.
Resumo:
A new dual-frequency laser displacement measurement interferometer with nanometer precision has been developed. An eight-pass optical subdivision technology is proposed to improve resolution based on commercial interferometers. A static positioning error measuring method has been used to examine the precision and repeatability of the laser interferometer. An optical resolution of 1.24 nm and an accuracy of nanometer scale have been achieved.
Resumo:
Only the first- order Doppler frequency shift is considered in current laser dual- frequency interferometers; however; the second- order Doppler frequency shift should be considered when the measurement corner cube ( MCC) moves at high velocity or variable velocity because it can cause considerable error. The influence of the second- order Doppler frequency shift on interferometer error is studied in this paper, and a model of the second- order Doppler error is put forward. Moreover, the model has been simulated with both high velocity and variable velocity motion. The simulated results show that the second- order Doppler error is proportional to the velocity of the MCC when it moves with uniform motion and the measured displacement is certain. When the MCC moves with variable motion, the second- order Doppler error concerns not only velocity but also acceleration. When muzzle velocity is zero the second- order Doppler error caused by an acceleration of 0.6g can be up to 2.5 nm in 0.4 s, which is not negligible in nanometric measurement. Moreover, when the muzzle velocity is nonzero, the accelerated motion may result in a greater error and decelerated motion may result in a smaller error.
Resumo:
The theory of optical subdivision techniques of dual-frequency laser interferometers is stated. And a novel optical subdivision technique is proposed originally to enhance resolution of a commercial interferometer by adding some corner-cubes. Then the performance of the interferometer is tested. The interferometer resolution of 1.24 nm and the average error of below 2 nm are achieved by using the technique. The most novel of the optical subdivision technique is without lambda/4 plates. It is less sensitive to environmental changes, it has prodigious potential to improve resolution farther and it can reduce polarization mixing error. (C) 2007 Elsevier GmbH. All rights reserved.
Resumo:
Single-frequency output power of 7.3 W at 2.09 mu m from a monolithic Ho:YAG nonplanar ring oscillator (NPRO) is demonstrated. Resonantly pumped by a Tm-doped fiber laser at 1.91 mu m, the Ho:YAG NPRO produces 71% of slope efficiency with respect to absorbed pump power and nearly diffraction-limited output with a beam quality parameter of M-2 approximate to 1.1. (c) 2008 Optical Society of America
Resumo:
Aluminum nitride (AlN) films were prepared on gamma-LiAlO2 substrates by radio frequency (rf) magnetron sputtering. The influence of substrate temperature (T-s) and nitrogen (N-2) concentration on film growth was investigated. The X-ray diffraction (XRD) results reveal that highly c-axis oriented AlN films can be obtained in the temperature range from room temperature (RT) to 300 degrees C. A smoother surface and a crystalline quality decrease with increasing N-2 concentration have been observed by XRD and atomic force microscopy (AFM) for the films deposited at lower substrate temperature. On the contrary, the degradation of the surface smoothness and the higher crystalline quality can be observed for the films deposited at a higher substrate temperature with N-2-rich ambient. The growth mechanism which leads to different crystalline quality of the films is discussed. (C) 2008 Elsevier B.V. All rights reserved.