882 resultados para FEEDFORWARD NEURAL-NETWORKS


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este trabalho apresenta um sistema neural modular, que processa separadamente informações de contexto espacial e temporal, para a tarefa de reprodução de sequências temporais. Para o desenvolvimento do sistema neural foram considerados redes neurais recorrentes, modelos estocásticos, sistemas neurais modulares e processamento de informações de contexto. Em seguida, foram estudados três modelos com abordagens distintas para aprendizagem de seqüências temporais: uma rede neural parcialmente recorrente, um exemplo de sistema neural modular e um modelo estocástico utilizando a teoria de modelos markovianos escondidos. Com base nos estudos e modelos apresentados, esta pesquisa propõe um sistema formado por dois módulos sucessivos distintos. Uma rede de propagação direta (módulo estimador de contexto espacial) realiza o processamento de contexto espacial identificando a seqüência a ser reproduzida e fornecendo um protótipo do contexto para o segundo módulo. Este é formado por uma rede parcialmente recorrente (módulo de reprodução de sequências temporais) para aprender as informações de contexto temporal e reproduzir em suas saídas a seqüência identificada pelo módulo anterior. Para a finalidade mencionada, este mestrado utiliza a distribuição de Gibbs na saída do módulo para contexto espacial de forma que este forneça probabilidades de contexto espacial, indicando o grau de certeza do módulo e possibilitando a utilização de procedimentos especiais para os casos de dúvida. O sistema neural foi testado em conjuntos contendo trajetórias abertas, fechadas, e com diferentes situações de ambigüidade e complexidade. Duas situações distintas foram avaliadas: (a) capacidade do sistema em reproduzir trajetórias a partir de pontos iniciais treinados; e (b) capacidade de generalização do sistema reproduzindo trajetórias considerando pontos iniciais ou finais em situações não treinadas. A situação (b) é um problema de difícil ) solução em redes neurais devido à falta de contexto temporal, essencial na reprodução de seqüências. Foram realizados experimentos comparando o desempenho do sistema modular proposto com o de uma rede parcialmente recorrente operando sozinha e um sistema modular neural (TOTEM). Os resultados sugerem que o sistema proposto apresentou uma capacidade de generalização significamente melhor, sem que houvesse uma deterioração na capacidade de reproduzir seqüências treinadas. Esses resultados foram obtidos em sistema mais simples que o TOTEM.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A avaliação perceptivo-auditiva tem papel fundamental no estudo e na avaliação da voz, no entanto, por ser subjetiva está sujeita a imprecisões e variações. Por outro lado, a análise acústica permite a reprodutibilidade de resultados, porém precisa ser aprimorada, pois não analisa com precisão vozes com disfonias mais intensas e com ondas caóticas. Assim, elaborar medidas que proporcionem conhecimentos confiáveis em relação à função vocal resulta de uma necessidade antiga dentro desta linha de pesquisa e atuação clínica. Neste contexto, o uso da inteligência artificial, como as redes neurais artificiais, indica ser uma abordagem promissora. Objetivo: Validar um sistema automático utilizando redes neurais artificiais para a avaliação de vozes rugosas e soprosas. Materiais e métodos: Foram selecionadas 150 vozes, desde neutras até com presença em grau intenso de rugosidade e/ou soprosidade, do banco de dados da Clínica de Fonoaudiologia da Faculdade de Odontologia de Bauru (FOB/USP). Dessas vozes, 23 foram excluídas por não responderem aos critérios de inclusão na amostra, assim utilizaram-se 123 vozes. Procedimentos: avaliação perceptivo-auditiva pela escala visual analógica de 100 mm e pela escala numérica de quatro pontos; extração de características do sinal de voz por meio da Transformada Wavelet Packet e dos parâmetros acústicos: jitter, shimmer, amplitude da derivada e amplitude do pitch; e validação do classificador por meio da parametrização, treino, teste e avaliação das redes neurais artificiais. Resultados: Na avaliação perceptivo-auditiva encontrou-se, por meio do teste Coeficiente de Correlação Intraclasse (CCI), concordâncias inter e intrajuiz excelentes, com p = 0,85 na concordância interjuízes e p variando de 0,87 a 0,93 nas concordâncias intrajuiz. Em relação ao desempenho da rede neural artificial, na discriminação da soprosidade e da rugosidade e dos seus respectivos graus, encontrou-se o melhor desempenho para a soprosidade no subconjunto composto pelo jitter, amplitude do pitch e frequência fundamental, no qual obteve-se taxa de acerto de 74%, concordância excelente com a avaliação perceptivo-auditiva da escala visual analógica (0,80 no CCI) e erro médio de 9 mm. Para a rugosidade, o melhor subconjunto foi composto pela Transformada Wavelet Packet com 1 nível de decomposição, jitter, shimmer, amplitude do pitch e frequência fundamental, no qual obteve-se 73% de acerto, concordância excelente (0,84 no CCI), e erro médio de 10 mm. Conclusão: O uso da inteligência artificial baseado em redes neurais artificiais na identificação, e graduação da rugosidade e da soprosidade, apresentou confiabilidade excelente (CCI > 0,80), com resultados semelhantes a concordância interjuízes. Dessa forma, a rede neural artificial revela-se como uma metodologia promissora de avaliação vocal, tendo sua maior vantagem a objetividade na avaliação.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper we propose a neural network model to simplify and 2D meshes. This model is based on the Growing Neural Gas model and is able to simplify any mesh with different topologies and sizes. A triangulation process is included with the objective to reconstruct the mesh. This model is applied to some problems related to urban networks.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The Growing Neural Gas model is used widely in artificial neural networks. However, its application is limited in some contexts by the proliferation of nodes in dense areas of the input space. In this study, we introduce some modifications to address this problem by imposing three restrictions on the insertion of new nodes. Each restriction aims to maintain the homogeneous values of selected criteria. One criterion is related to the square error of classification and an alternative approach is proposed for avoiding additional computational costs. Three parameters are added that allow the regulation of the restriction criteria. The resulting algorithm allows models to be obtained that suit specific needs by specifying meaningful parameters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This work describes a neural network based architecture that represents and estimates object motion in videos. This architecture addresses multiple computer vision tasks such as image segmentation, object representation or characterization, motion analysis and tracking. The use of a neural network architecture allows for the simultaneous estimation of global and local motion and the representation of deformable objects. This architecture also avoids the problem of finding corresponding features while tracking moving objects. Due to the parallel nature of neural networks, the architecture has been implemented on GPUs that allows the system to meet a set of requirements such as: time constraints management, robustness, high processing speed and re-configurability. Experiments are presented that demonstrate the validity of our architecture to solve problems of mobile agents tracking and motion analysis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

3D sensors provides valuable information for mobile robotic tasks like scene classification or object recognition, but these sensors often produce noisy data that makes impossible applying classical keypoint detection and feature extraction techniques. Therefore, noise removal and downsampling have become essential steps in 3D data processing. In this work, we propose the use of a 3D filtering and down-sampling technique based on a Growing Neural Gas (GNG) network. GNG method is able to deal with outliers presents in the input data. These features allows to represent 3D spaces, obtaining an induced Delaunay Triangulation of the input space. Experiments show how the state-of-the-art keypoint detectors improve their performance using GNG output representation as input data. Descriptors extracted on improved keypoints perform better matching in robotics applications as 3D scene registration.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Generalization performance in recurrent neural networks is enhanced by cascading several networks. By discretizing abstractions induced in one network, other networks can operate on a coarse symbolic level with increased performance on sparse and structural prediction tasks. The level of systematicity exhibited by the cascade of recurrent networks is assessed on the basis of three language domains. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Motivation: Targeting peptides direct nascent proteins to their specific subcellular compartment. Knowledge of targeting signals enables informed drug design and reliable annotation of gene products. However, due to the low similarity of such sequences and the dynamical nature of the sorting process, the computational prediction of subcellular localization of proteins is challenging. Results: We contrast the use of feed forward models as employed by the popular TargetP/SignalP predictors with a sequence-biased recurrent network model. The models are evaluated in terms of performance at the residue level and at the sequence level, and demonstrate that recurrent networks improve the overall prediction performance. Compared to the original results reported for TargetP, an ensemble of the tested models increases the accuracy by 6 and 5% on non-plant and plant data, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Differential pathophysiological roles of estrogen receptors alpha (ERα) and beta (ERβ) are of particular interest for phytochemical screening. A QSAR incorporating theoretical descriptors was developed in the present study utilizing sequential multiple-output artificial neural networks. Significant steric, constitutional, topological and electronic descriptors were identified enabling ER affinity differentiation.

Relevância:

90.00% 90.00%

Publicador:

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a neural network based technique for the classification of segments of road images into cracks and normal images. The density and histogram features are extracted. The features are passed to a neural network for the classification of images into images with and without cracks. Once images are classified into cracks and non-cracks, they are passed to another neural network for the classification of a crack type after segmentation. Some experiments were conducted and promising results were obtained. The selected results and a comparative analysis are included in this paper.