Prediction of subcellular localization using sequence-biased recurrent networks


Autoria(s): Boden, Mikael; Hawkins, John
Contribuinte(s)

A. Bateman

A. Valencia

Data(s)

01/05/2005

Resumo

Motivation: Targeting peptides direct nascent proteins to their specific subcellular compartment. Knowledge of targeting signals enables informed drug design and reliable annotation of gene products. However, due to the low similarity of such sequences and the dynamical nature of the sorting process, the computational prediction of subcellular localization of proteins is challenging. Results: We contrast the use of feed forward models as employed by the popular TargetP/SignalP predictors with a sequence-biased recurrent network model. The models are evaluated in terms of performance at the residue level and at the sequence level, and demonstrate that recurrent networks improve the overall prediction performance. Compared to the original results reported for TargetP, an ensemble of the tested models increases the accuracy by 6 and 5% on non-plant and plant data, respectively.

Identificador

http://espace.library.uq.edu.au/view/UQ:77434

Idioma(s)

eng

Publicador

Oxford University Press

Palavras-Chave #Mathematics, Interdisciplinary Applications #Biochemical Research Methods #Biotechnology & Applied Microbiology #Computer Science, Interdisciplinary Applications #Statistics & Probability #Protein Secondary Structure #Support Vector Machines #Neural-networks #Signal Peptides #Cleavage Sites #Location #Evolutionary #Information #Transport #C1 #280210 Simulation and Modelling #700100 Computer Software and Services
Tipo

Journal Article