959 resultados para Experimental animal models
Resumo:
In neurodegenerative diseases, one can observe deposits of degradation products that represent hallmark structures. Actually, the underlying mechanisms are not well understood, but some hypotheses claim that the ubiquitin-proteasome system is perturbed in neurodegenerative diseases. Some of the influencing factors are aging, oxidation and the formation of free radicals, as well as genetic mutations which affect the function of proteins and result in an accumulation and formation of aggresomes. The amyotrophic lateral sclerosis, in which a malfunction of the sodium dismutase perturbs the redox system, is characterized by the accumulation of elements of the cytoskeleton in motor neurons and a progressive neuronal death. We suppose that in these diseases the ubiquitin- proteasome system is deregulated and try to demonstrate this hypothesis by comparing the ubiquitination of different neurofilaments in brain and spinal cord of transgenic and control mice. These NFH-LacZ mice with a truncated NF-H protein and a ß-galactosidase marker protein induce an accumulation of NF-proteins and neurofilaments are no longer transported into axons or dendrites. The accumulation of such aggregates resembles the phenotype of amyotrophic lateral sclerosis. Beside the ubiquitination the neurofilament expression and phosphorylation state was investigated. The results cannot demonstrate a perturbation of the ubiquitin-proteasome system of neurofilaments in transgenic mice. In contrast, in accordance with the mechanism of the NFH-LacZ mice a decrease of high and medium density neurofilaments and a hypophosphorylation were found. In conclusion, to elicit the pathological mechanism of amyotrophic lateral sclerosis and to develop focused treatments, we have to review the pathological mechanism of the transgenic mice and repeat the experiments with other animal models or with human material. Other possibilities would be to focus on other degradation mechanisms, such as the endosome/lysosome system, and to define their role in the amyotrophic lateral sclerosis more clearly.
Resumo:
Here we review the results of our recent studies on neurodegeneration together with data on cerebral calcium precipitation in animal models and humans. A model that integrates the diversity of mechanisms involved in neurodegeneration is presented and discussed based on the functional relevance of calcium precipitation.
Resumo:
In Candida glabrata, the transcription factor CgPdr1 is involved in resistance to azole antifungals via upregulation of ATP binding cassette (ABC)-transporter genes including at least CgCDR1, CgCDR2 and CgSNQ2. A high diversity of GOF (gain-of-function) mutations in CgPDR1 exists for the upregulation of ABC-transporters. These mutations enhance C. glabrata virulence in animal models, thus indicating that CgPDR1 might regulate the expression of yet unidentified virulence factors. We hypothesized that CgPdr1-dependent virulence factor(s) should be commonly regulated by all GOF mutations in CgPDR1. As deduced from transcript profiling with microarrays, a high number of genes (up to 385) were differentially regulated by a selected number (7) of GOF mutations expressed in the same genetic background. Surprisingly, the transcriptional profiles resulting from expression of GOF mutations showed minimal overlap in co-regulated genes. Only two genes, CgCDR1 and PUP1 (for PDR1upregulated and encoding a mitochondrial protein), were commonly upregulated by all tested GOFs. While both genes mediated azole resistance, although to different extents, their deletions in an azole-resistant isolate led to a reduction of virulence and decreased tissue burden as compared to clinical parents. As expected from their role in C. glabrata virulence, the two genes were expressed as well in vitro and in vivo. The individual overexpression of these two genes in a CgPDR1-independent manner could partially restore phenotypes obtained in clinical isolates. These data therefore demonstrate that at least these two CgPDR1-dependent and -upregulated genes contribute to the enhanced virulence of C. glabrata that acquired azole resistance.
Resumo:
Broadly neutralizing antibodies reactive against most and even all variants of the same viral species have been described for influenza and HIV-1 (ref. 1). However, whether a neutralizing antibody could have the breadth of range to target different viral species was unknown. Human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV) are common pathogens that cause severe disease in premature newborns, hospitalized children and immune-compromised patients, and play a role in asthma exacerbations. Although antisera generated against either HRSV or HMPV are not cross-neutralizing, we speculated that, because of the repeated exposure to these viruses, cross-neutralizing antibodies may be selected in some individuals. Here we describe a human monoclonal antibody (MPE8) that potently cross-neutralizes HRSV and HMPV as well as two animal paramyxoviruses: bovine RSV (BRSV) and pneumonia virus of mice (PVM). In its germline configuration, MPE8 is HRSV-specific and its breadth is achieved by somatic mutations in the light chain variable region. MPE8 did not result in the selection of viral escape mutants that evaded antibody targeting and showed potent prophylactic efficacy in animal models of HRSV and HMPV infection, as well as prophylactic and therapeutic efficacy in the more relevant model of lethal PVM infection. The core epitope of MPE8 was mapped on two highly conserved anti-parallel β-strands on the pre-fusion viral F protein, which are rearranged in the post-fusion F protein conformation. Twenty-six out of the thirty HRSV-specific neutralizing antibodies isolated were also found to be specific for the pre-fusion F protein. Taken together, these results indicate that MPE8 might be used for the prophylaxis and therapy of severe HRSV and HMPV infections and identify the pre-fusion F protein as a candidate HRSV vaccine.
Resumo:
Along with viral vectors, non-viral strategies have been developed in order to efficiently deliver nucleic acids to ocular cells. During the last decade, we have observed that the outcome of these non-viral delivery systems depends on the genetic material used, the targeted tissue or cells, the expected effect duration, and the routes of administration. Assessment of efficiency has been evaluated in normal eyes or in animal models of ocular diseases. The chemical and physical methods that have been adapted for the delivery of nucleic acids to ocular tissues are highlighted and discussed in this review. Also, the results obtained with different non-viral strategies from their initial conception to their present development are summarized. At the present, selective targeting of ocular tissues and cells can be achieved using the most yielding route of administration to the eye in combination with an appropriate drug delivery technique.
Resumo:
Tumor-regressions following tumor-associated-antigen vaccination in animal models contrast with the limited clinical outcomes in cancer patients. Most animal studies however used subcutaneous-tumor-models and questions arise as whether these are relevant for tumors growing in mucosae; whether specific mucosal-homing instructions are required; and how this may be influenced by the tumor.
Resumo:
Cutaneous Leishmaniasis caused by Leishmania guyanensis parasites is endemic in the North-East South America. There is, however, little information available concerning L. guyanensis infectivity and the immune response associated with different stages of the disease. In the following chapter we discuss the results obtained in human research with regard to the involvement of different types of immune cells and their roles during the development of infection with L. guyanensis parasites. We also provide a résumé on the status of animal models of L. guyanensis infection and emphasize how essential these models are so as to increase our knowledge of immunopathogenesis in the host and, thus, provide an indispensable tool to test new therapeutic strategies.
Resumo:
Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of the occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. Although it has been established in animal models that neurochemical pathways are heavily affected by early visual deprivation, the effects of blindness on these pathways in humans is still not well characterized. Here, using (1)H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within the occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways.
Resumo:
The complexity of sleep-wake regulation, in addition to the many environmental influences, includes genetic predisposing factors, which begin to be discovered. Most of the current progress in the study of sleep genetics comes from animal models (dogs, mice, and drosophila). Multiple approaches using both animal models and different genetic techniques are needed to follow the segregation and ultimately to identify 'sleep genes' and molecular bases of sleep disorders. Recent progress in molecular genetics and the development of detailed human genome map have already led to the identification of genetic factors in several complex disorders. Only a few genes are known for which a mutation causes a sleep disorder. However, single gene disorders are rare and most common disorders are complex in terms of their genetic susceptibility, environmental factors, gene-gene, and gene-environment interactions. We review here the current progress in the genetics of normal and pathological sleep and suggest a few future perspectives.
Resumo:
Attempts to use a stimulated echo acquisition mode (STEAM) in cardiac imaging are impeded by imaging artifacts that result in signal attenuation and nulling of the cardiac tissue. In this work, we present a method to reduce this artifact by acquiring two sets of stimulated echo images with two different demodulations. The resulting two images are combined to recover the signal loss and weighted to compensate for possible deformation-dependent intensity variation. Numerical simulations were used to validate the theory. Also, the proposed correction method was applied to in vivo imaging of normal volunteers (n = 6) and animal models with induced infarction (n = 3). The results show the ability of the method to recover the lost myocardial signal and generate artifact-free black-blood cardiac images.
Resumo:
Purpose: Studies on large animal models are an important step to test new therapeutical strategies before human application. Considering the importance of cone function for human vision and the paucity of large animal models for cone dystrophies having an enriched cone region, we propose to develop a pig model for cone degeneration. With a lentiviral-directed transgenesis, we obtained pigs transgenic for a cone-dominant mutant gene described in a human cone dystrophy.Methods: Lentiviral vectors encoding the human double mutant GUCY2DE837D/R838S cDNA under the control of a region of the pig arrestin-3 promoter (Arr3) was produced and used for lentiviral-derived transgenesis in pigs. PCR-genotyping and southern blotting determined the genotype of pigs born after injection of the vector at the zygote stage. Retina function analysis was performed by ERG and behavioral tests at 11, 24 and 54 weeks of age. OCT and histological analyses were performed to describe the retina morphology.Results: The ratio of transgenic pigs born after lentiviral-directed transgenesis was close to 50%. Transgenic pigs with 3 to 5 transgene copies per cell clearly present a reduced photopic response from 3 months of age on. Except for one pig, which has 6 integrated transgene copies, no dramatic decrease in general mobility was observed even at 6 months of age. OCT examinations reveal no major changes in the ONL structure of the 6-months old pigs. The retina morphology was well conserved in the 2 pigs sacrificed (3 and 6 months old) except a noticeable displacement of some cone nuclei in the outer segment layer.Conclusions: Lentiviral-directed transgenesis is a rapid and straightforward method to engineer transgenic pigs. Some Arr3-GUCY2DE837D/R838S pigs show signs of retinal dysfunction but further work is needed to describe the progression of the disease in this model.
Resumo:
Pancreatic ß cells are highly specialized endocrine cells located within the islets of Langerhans in the pancreas. Their main role is to produce and secrete insulin, the hormone essential for the regulation of glucose homeostasis and body's metabolism. Diabetes mellitus develops when the amount of insulin released by ß cells is not sufficient to cover the metabolic demand. In type 1 diabetes (5-10% of diagnoses) insulin deficiency is caused by the autoimmune destruction of pancreatic ß cells. Type 2 diabetes (90% of diagnoses) results from a genetic predisposition and from the presence of adverse environmental conditions. The combination of these factors reduces insulin sensitivity of peripheral target tissues, causes impairment in ß-cell function and can lead to partial loss of ß cells. The development of novel therapeutic strategies for the treatment of diabetes necessitates the comprehension of the cellular processes involved in dysfunction and loss of ß cells. My thesis was focused on the involvement in the physiopathological processes leading to the development of diabetes of a class of small regulatory RNA molecules, called microRNAs (miRNAs) that post- transcriptionally regulate gene expression. Global miRNA profiling in pancreatic islets of two animal models of diabetes, the db/db mice and mice that were fed a high fat diet (HFD), characterized by obesity and insulin resistance, led us to identify two groups of miRNAs displaying expression changes under pre-diabetic and diabetic conditions. Among the miRNAs already upregulated in pre-diabetic db/db mice and HFD mice, miR- 132 was found to have beneficial effects on pancreatic ß cell function and survival. Indeed, mimicking the upregulation of miR-132 in primary pancreatic islet cells and ß-cell lines improved glucose- induced insulin secretion and favored survival of the cells upon exposure to pro-apoptotic stimuli such as palmitate and cytokines. MiR-132 was found to exert its action by enhancing the expression of MafA, a transcription factor essential for ß-cell function, survival and identity. On the other hand, up-regulation of miR-199a-5p and miR-199a-3p was detectable only in the islets of diabetic db/db mice and resulted in impaired insulin secretion and sensitization of the cells to apoptosis. MiR-199a- 5p was found to decrease insulin secretion by inducing the expression of granuphilin, a potent inhibitor of ß cell exocytosis. In contrast, miR-199a-3p was demonstrated to directly target and reduce the expression of two key ß-cell genes, mTOR and cMET, resulting in impaired ß-cell adaptation to metabolic demands and loss by apoptosis. Our findings suggest that miRNAs are important players in the onset of type 2 diabetes. MiRNA expression is adjusted in pancreatic ß cells exposed to a diabetogenic environment. These changes initially concern miRNAs responsible for adaptive processes aimed at compensating the onset of insulin resistance, but later such changes can be overlapped by modifications in the level of several additional miRNAs that favor ß-cell failure and the onset of type 2 diabetes.
Resumo:
La diarrhée congénitale de sodium est une maladie génétique très rare. Les enfants touchés par cette maladie présentent une diarrhée aqueuse sévère accompagnée d'une perte fécale de sodium et bicarbonates causant une déshydratation hyponatrémique et une acidose métabolique. Des analyses génétiques ont identifié des mutations du gène Spint2 comme cause de cette maladie. Le gène Spint2 code pour un inhibiteur de sérine protéase transmembranaire exprimé dans divers épithéliums tels que ceux du tube digestif ou des tubules rénaux. Le rôle physiologique de Spint2 n'est pas connu. De plus, aucun partenaire physiologique de Spint2 n'a été identifié et le mécanisme d'inhibition par Spint2 nous est peu connu. Le but de ce projet est donc d'obtenir de plus amples informations concernant la fonction et le rôle de Spint2 dans le contexte de la diarrhée congénitale de sodium, cela afin de mieux comprendre la physiopathologie des diarrhées et peut-être d'identifier de nouvelles cibles thérapeutiques. Un test fonctionnel dans les ovocytes de Xenopus a identifié les sérine protéases transmembranaires CAPI et Tmprssl3 comme potentielles cibles de Spint2 dans la mesure où ces deux protéases n'étaient plus bloquées par le mutant de Spint2 Y163C qui est associé avec la diarrhée congénitale de sodium. Des expériences fonctionnelles et biochimiques plus poussées suggèrent que l'inhibition de Tmprssl3 par Spint2 est le résultat d'une interaction complexe entre ces deux protéines. Les effets des sérine protéases transmembranaires sur l'échangeur Na+-H+ NHE3, qui pourrait être impliqué dans la pathogenèse de la diarrhée congénitale de sodium ont aussi été testés. Un clivage spécifique de NHE3 par la sérine protéase transmembranaire Tmprss3 a été observé lors d'expériences biochimiques. Malheureusement, la pertinence physiologique de ces résultats n'a pas pu être évaluée in vivo, étant donné que le modèle de souris knockout conditionnel de Spint2 que nous avons créé ne montrait une réduction de l'expression de Spint2 que de 50% et aucun phénotype. En résumé, ce travail met en évidence deux nouveaux partenaires possibles de Spint2, ainsi qu'une potentielle régulation de NHE3 par des sérine protéases transmembranaires. Des expériences supplémentaires faites dans des modèles animaux et lignées cellulaires sont requises pour évaluer la pertinence physiologique de ces données et pour obtenir de plus amples informations au sujet de Spint2 et de la diarrhée congénitale de sodium. - The congenital sodium diarrhea is a very rare genetic disease. Children affected by this condition suffer from a severe diarrhea characterized by watery stools with a high fecal loss of sodium and bicarbonates, resulting in hyponatremic dehydration and metabolic acidosis. Genetic analyses have identified mutations in the Spint2 gene as a cause of this disease. The spint2 gene encodes a transmembrane serine protease inhibitor expressed in various epithelial tissues including the gastro-intestinal tract and renal tubules. The physiological role of Spint2 is completely unknown. In addition, physiological partners of Spint2 are still to be identified and the mechanism of inhibition by Spint2 remains elusive. Therefore, the aim of this project was to get insights about the function and the role of Spint2 in the context of the congenital sodium diarrhea in order to better understand the pathophysiology of diarrheas and maybe identify new therapeutic targets. A functional assay in Xenopus oocytes identified the membrane-bound serine proteases CAPI and Tmprssl3 as potential targets of Spint2 because both proteases were no longer inhibited by the mutant Spint2 Y163C that has been associated with the congenital diarrhea. Further functional and biochemical experiments suggested that the inhibition of Tmprssl3 by Spint2 occurs though a complex interaction between both proteins. The effects of membrane-bound serine proteases on the Na+-H+ exchanger NHE3, which has been proposed to be involved in the pathogenesis of the congenital sodium diarrhea, were also tested. A specific cleavage of NHE3 by the membrane-bound serine protease Tmprss3 was observed in biochemical experiments. Unfortunately, the physiological relevance of these results could not be assessed in vivo since the conditional Spint2 knockout mouse model that we generated showed a reduction in Spint2 expression of only 50% and displayed no phenotype. Briefly, this work provides two new potential partners of Spint2 and emphasizes a putative regulation of NHE3 by membrane-bound serine proteases. Further work done in animal models and cell lines is required to assess the physiological relevance of these results and to obtain additional data about Spint2 and the congenital diarrhea.
Resumo:
A recombinant rubella virus E1 (rE1) glycoprotein was produced and some of its chemical and immunological features were characterized. Two animal models were then used to establish that the rE1 glycoprotein and rubella virus particles shared antigenic and immunogenic properties. In the first one, sera from rE1 glycoprotein-immunized BALB/c mice neutralized in vitro rubella virus infection. In the second model, severe combined immune deficient (SCID) mice implanted with tonsil fragments from rubella immune donors and immunized with rE1 glycoprotein produced human anti-rubella virus antibodies. Altogether, these results showed that immunization with rE1 glycoprotein elicited neutralizing anti-rubella virus antibodies. This study thus indicated that the rE1 glycoprotein could constitute a non-replicating rubella vaccine.
Resumo:
Aim: The insulin sensitizer rosiglitazone (RTZ) acts by activating peroxisome proliferator and activated receptor gamma (PPAR gamma), an effect accompanied in vivo in humans by an increase in fat storage. We hypothesized that this effect concerns PPARgamma(1) and PPARgamma(2) differently and is dependant on the origin of the adipose cells (subcutaneous or visceral). To this aim, the effect of RTZ, the PPARgamma antagonist GW9662 and lentiviral vectors expressing interfering RNA were evaluated on human pre-adipocyte models. Methods: Two models were investigated: the human pre-adipose cell line Chub-S7 and primary pre-adipocytes derived from subcutaneous and visceral biopsies of adipose tissue (AT) obtained from obese patients. Cells were used to perform oil-red O staining, gene expression measurements and lentiviral infections. Results: In both models, RTZ was found to stimulate the differentiation of pre-adipocytes into mature cells. This was accompanied by significant increases in both the PPARgamma(1) and PPARgamma(2) gene expression, with a relatively stronger stimulation of PPARgamma(2). In contrast, RTZ failed to stimulate differentiation processes when cells were incubated in the presence of GW9662. This effect was similar to the effect observed using interfering RNA against PPARgamma(2). It was accompanied by an abrogation of the RTZ-induced PPARgamma(2) gene expression, whereas the level of PPARgamma(1) was not affected. Conclusions: Both the GW9662 treatment and interfering RNA against PPARgamma(2) are able to abrogate RTZ-induced differentiation without a significant change of PPARgamma(1) gene expression. These results are consistent with previous results obtained in animal models and suggest that in humans PPARgamma(2) may also be the key isoform involved in fat storage.