921 resultados para Error analysis (Mathematics)
Resumo:
In this paper, a low complexity system for spectral analysis of heart rate variability (HRV) is presented. The main idea of the proposed approach is the implementation of the Fast-Lomb periodogram that is a ubiquitous tool in spectral analysis, using a wavelet based Fast Fourier transform. Interestingly we show that the proposed approach enables the classification of processed data into more and less significant based on their contribution to output quality. Based on such a classification a percentage of less-significant data is being pruned leading to a significant reduction of algorithmic complexity with minimal quality degradation. Indeed, our results indicate that the proposed system can achieve up-to 45% reduction in number of computations with only 4.9% average error in the output quality compared to a conventional FFT based HRV system.
Resumo:
In this paper, the overall formation stability of unmanned multi-vehicle is mathematically presented under interconnection topologies. A novel definition of formation error is first given and followed by the proposed formation stability hypothesis. Based on this hypothesis, a unique extension-decomposition-aggregation scheme is then employed to support the stability analysis for the overall multi-vehicle formation under a mesh topology. It is proved that the overall formation control system consisting of N number of nonlinear vehicles is not only asymptotically, but also exponentially stable in the sense of Lyapunov within a neighbourhood of the desired formation. This technique is shown to be applicable for a mesh topology but is equally applicable for other topologies. Simulation study of the formation manoeuvre of multiple Aerosonde UAVs, in 3D-space, is finally carried out verifying the achieved formation stability result.
Resumo:
The use of handheld near infrared (NIR) instrumentation, as a tool for rapid analysis, has the potential to be used widely in the animal feed sector. A comparison was made between handheld NIR and benchtop instruments in terms of proximate analysis of poultry feed using off-the-shelf calibration models and including statistical analysis. Additionally, melamine adulterated soya bean products were used to develop qualitative and quantitative calibration models from the NIRS spectral data with excellent calibration models and prediction statistics obtained. With regards to the quantitative approach, the coefficients of determination (R2) were found to be 0.94-0.99 with the corresponding values for the root mean square error of calibration and prediction were found to be 0.081-0.215 % and 0.095-0.288 % respectively. In addition, cross validation was used to further validate the models with the root mean square error of cross validation found to be 0.101-0.212 %. Furthermore, by adopting a qualitative approach with the spectral data and applying Principal Component Analysis, it was possible to discriminate between adulterated and pure samples.
Resumo:
Linguistic influences in mathematics have previously been explored throughsubtyping methodology and by taking advantage of the componential nature ofmathematics and variations in language requirements that exist across tasks. Thepresent longitudinal investigation aimed to examine the language requirements of mathematical tasks in young children aged 5-7 years. Initially, 256 children were screened for mathematics and reading difficulties using standardised measures. Those scoring at or below the 35th percentile on either dimension were classified as having difficulty. From this screening, 115 children were allocated to each of the MD (n=26), MDRD (n=32), reading difficulty (RD, n=22) and typically achieving (TA, n=35) subtypes. These children were tested at four time points, separated by six monthly intervals, on a battery of seven mathematical tasks. Growth curve analysis indicated that, in contrast to previous research on older children, young children with MD and MDRD had very similar patterns of development on all mathematical tasks. Overall, the subtype comparisons suggested that language played only a minor mediating role in most tasks, and this was secondary in importance to non-verbal skills. Correlational evidence suggested that children from the different subtypescould have been using different mixes of verbal and non-verbal strategies to solve the mathematical problems.
Resumo:
Objective: Molecular pathology relies on identifying anomalies using PCR or analysis of DNA/RNA. This is important in solid tumours where molecular stratification of patients define targeted treatment. These molecular biomarkers rely on examination of tumour, annotation for possible macro dissection/tumour cell enrichment and the estimation of % tumour. Manually marking up tumour is error prone. Method: We have developed a method for automated tumour mark-up and % cell calculations using image analysis called TissueMark® based on texture analysis for lung, colorectal and breast (cases=245, 100, 100 respectively). Pathologists marked slides for tumour and reviewed the automated analysis. A subset of slides was manually counted for tumour cells to provide a benchmark for automated image analysis. Results: There was a strong concordance between pathological and automated mark-up (100 % acceptance rate for macro-dissection). We also showed a strong concordance between manually/automatic drawn boundaries (median exclusion/inclusion error of 91.70 %/89 %). EGFR mutation analysis was precisely the same for manual and automated annotation-based macrodissection. The annotation accuracy rates in breast and colorectal cancer were 83 and 80 % respectively. Finally, region-based estimations of tumour percentage using image analysis showed significant correlation with actual cell counts. Conclusion: Image analysis can be used for macro-dissection to (i) annotate tissue for tumour and (ii) estimate the % tumour cells and represents an approach to standardising/improving molecular diagnostics.
Resumo:
Heat sinks are widely used for cooling electronic devices and systems. Their thermal performance is usually determined by the material, shape, and size of the heat sink. With the assistance of computational fluid dynamics (CFD) and surrogate-based optimization, heat sinks can be designed and optimized to achieve a high level of performance. In this paper, the design and optimization of a plate-fin-type heat sink cooled by impingement jet is presented. The flow and thermal fields are simulated using the CFD simulation; the thermal resistance of the heat sink is then estimated. A Kriging surrogate model is developed to approximate the objective function (thermal resistance) as a function of design variables. Surrogate-based optimization is implemented by adaptively adding infill points based on an integrated strategy of the minimum value, the maximum mean square error approach, and the expected improvement approaches. The results show the influence of design variables on the thermal resistance and give the optimal heat sink with lowest thermal resistance for given jet impingement conditions.
Resumo:
Background: Qualified teaching staffs are neither available nor affordable to provide large numbers of children with individual attention. One solution to providing individual tuition has been the development of tutoring programs that are delivered by nonprofessional tutors, such as classmates, older children and community volunteers. Objectives: We have conducted a systematic review of cross-age tutoring interventions delivered by non-professional tutors to children between 5 and 11 years old. Only randomized controlled trials with reliable measures of academic outcomes, and continuing for at least 12 weeks, compared to instruction as usual, were included. Results: Searches of electronic databases and previous reviews, and contacts with researchers yielded 11,564 titles; after screening, 15 studies were included in the analysis. Cross-age tutoring showed small significant effects for tutees on the composite measure of reading (g=0.18, 95% CI: 0.08, 0.27, N=8251), decoding skills (g=0.29, 95% CI: 0.13, 0.44, N=7081), and reading comprehension (g=0.11, 95% CI: 0.01, 0.21, N=6945). No significant effects were detected for other reading sub-skills or for mathematics. The quality of evidence is decreased by study limitations and high heterogeneity of effects. Conclusions: The benefits for tutees of non-professional peer and cross-age tutoring can be given a positive but weak recommendation, considering the low quality of evidence and lack of cost information. Subgroup analyses suggested that highly-structured reading programs may be more useful than loosely-structured programs. Large-scale replication trials using factorial design, process evaluations, reliable outcome measures and logic models are needed to better understand under what conditions, and for whom, cross-age non-professional tutoring may be effective.
Resumo:
To estimate the prevalence of refractive error in adults across Europe. Refractive data (mean spherical equivalent) collected between 1990 and 2013 from fifteen population-based cohort and cross-sectional studies of the European Eye Epidemiology (E3) Consortium were combined in a random effects meta-analysis stratified by 5-year age intervals and gender. Participants were excluded if they were identified as having had cataract surgery, retinal detachment, refractive surgery or other factors that might influence refraction. Estimates of refractive error prevalence were obtained including the following classifications: myopia ≤−0.75 diopters (D), high myopia ≤−6D, hyperopia ≥1D and astigmatism ≥1D. Meta-analysis of refractive error was performed for 61,946 individuals from fifteen studies with median age ranging from 44 to 81 and minimal ethnic variation (98 % European ancestry). The age-standardised prevalences (using the 2010 European Standard Population, limited to those ≥25 and <90 years old) were: myopia 30.6 % [95 % confidence interval (CI) 30.4–30.9], high myopia 2.7 % (95 % CI 2.69–2.73), hyperopia 25.2 % (95 % CI 25.0–25.4) and astigmatism 23.9 % (95 % CI 23.7–24.1). Age-specific estimates revealed a high prevalence of myopia in younger participants [47.2 % (CI 41.8–52.5) in 25–29 years-olds]. Refractive error affects just over a half of European adults. The greatest burden of refractive error is due to myopia, with high prevalence rates in young adults. Using the 2010 European population estimates, we estimate there are 227.2 million people with myopia across Europe.
Resumo:
This systematic review summarizes effects of peer tutoring delivered to children between 5 and 11 years old by non-professional tutors, such as classmates, older children and adult community peer volunteers. Inclusion criteria for the review included tutoring studies with a randomized controlled trial design, reliable measures of academic outcomes, and duration of at least 12 weeks. Searches of electronic databases, previous reviews, and contacts with researchers yielded 11,564 titles. After screening, 15 studies were included in the analysis. Cross-age tutoring showed small significant effects for tutees on the composite measure of reading (g = 0.18, 95% CI: 0.08, 0.27, N = 8251), decoding skills (g = 0.29, 95% CI: 0.13, 0.44, N = 7081), and reading comprehension (g = 0.11, 95% CI: 0.01, 0.21, N = 6945). No significant effects were detected for other reading sub-skills or for mathematics. The benefits to tutees of non-professional cross-age peer tutoring can be given a positive, but weak recommendation. Effect Sizes were modest and in the range −0.02 to 0.29. Questions regarding study limitations, lack of cost information, heterogeneity of effects, and the relatively small number of studies that have used a randomized controlled trial design means that the evidence base is not as strong as it could be. Subgroup analyses of included studies indicated that highly-structured reading programmes were of more benefit than those that were loosely-structured. Large-scale replication trials using factorial designs, reliable outcome measures, process evaluations and logic models are needed to better understand under what conditions, and for whom, cross-age non-professional peer tutoring may be most effective.
Resumo:
Biodegradable polymers, such as PLA (Polylactide), come from renewable resources like corn starch and if disposed of correctly, degrade and become harmless to the ecosystem making them attractive alternatives to petroleum based polymers. PLA in particular is used in a variety of applications including medical devices, food packaging and waste disposal packaging. However, the industry faces challenges in melt processing of PLA due to its poor thermal stability which is influenced by processing temperatures and shearing.
Identification and control of suitable processing conditions is extremely challenging, usually relying on trial and error, and often sensitive to batch to batch variations. Off-line assessment in a lab environment can result in high scrap rates, long lead times and lengthy and expensive process development. Scrap rates are typically in the region of 25-30% for medical grade PLA costing between €2000-€5000/kg.
Additives are used to enhance material properties such as mechanical properties and may also have a therapeutic role in the case of bioresorbable medical devices, for example the release of calcium from orthopaedic implants such as fixation screws promotes healing. Additives can also reduce the costs involved as less of the polymer resin is required.
This study investigates the scope for monitoring, modelling and optimising processing conditions for twin screw extrusion of PLA and PLA w/calcium carbonate to achieve desired material properties. A DAQ system has been constructed to gather data from a bespoke measurement die comprising melt temperature; pressure drop along the length of the die; and UV-Vis spectral data which is shown to correlate to filler dispersion. Trials were carried out under a range of processing conditions using a Design of Experiments approach and samples were tested for mechanical properties, degradation rate and the release rate of calcium. Relationships between recorded process data and material characterisation results are explored.
Resumo:
PURPOSE: This systematic review reports on the survival of feldspathic porcelain veneers.
MATERIALS AND METHODS: The Cochrane Library, MEDLINE (OVID), Embase, Web of Knowledge, selected journals, clinical trials registers, and conference proceedings were searched independently by two reviewers. Academic colleagues were also contacted to identify relevant research. Inclusion criteria were human cohort studies (prospective and retrospective) and controlled trials assessing outcomes of feldspathic porcelain veneers in more than 15 patients and with at least some of the veneers in situ for 5 years. Of 4,294 articles identified, 116 studies underwent full-text screenings and 69 were further reviewed for eligibility. Of these, 11 were included in the qualitative analysis and 6 (5 cohorts) were included in meta-analyses. Estimated cumulative survival and standard error for each study were assessed and used for meta-, sensitivity, and post hoc analyses. The I2 statistic and the Cochran Q test and its associated P value were used to evaluate statistical heterogeneity, with a random-effects meta-analysis used when the P value for heterogeneity was less than .1. Galbraith, forest, and funnel plots explored heterogeneity, publication patterns, and small study biases.
RESULTS: The estimated cumulative survival for feldspathic porcelain veneers was 95.7% (95% confidence interval [CI]: 92.9% to 98.4%) at 5 years and ranged from 64% to 95% at 10 years across three studies. A post hoc meta-analysis indicated that the 10-year best estimate may approach 95.6% (95% CI: 93.8% to 97.5%). High levels of statistical heterogeneity were found.
CONCLUSIONS: When bonded to enamel substrate, feldspathic porcelain veneers have a very high 10-year survival rate that may approach 95%. Clinical heterogeneity is associated with differences in reported survival rates. Use of clinically relevant survival definitions and careful reporting of tooth characteristics, censorship, clustering, and precise results in future research would improve metaanalytic estimates and aid treatment decisions.
Resumo:
This paper employs a unique extension-decomposition-aggregation (EDA) scheme to solve the formation flight control problem for multiple unmanned aerial vehicles (UAVs). The corresponding decentralised longitudinal and lateral formation autopilots are novelly designed to maintain the overall formation stability when encountering changes of the formation error and topologies. The concept of propagation layer number (PLN) is also proposed to provide an intuitive criterion to judge which type of formation topology is more suitable to minimise formation error propagation (FEP). The criterion states that the smaller the PLN of the formation is, the quicker the response to the formation error is. A smaller PLN also means that the resulting topology provides better prevention to the FEP. Simulation studies of formation flight of multiple Aerosonde UAVs demonstrate that the designed formation controller based on the EDA strategy performs satisfactorily in maintaining the overall formation stable, and the bidirectional partial-mesh topology is found to provide the best overall response to the formation error propagation based on the PLN criterion.
Resumo:
This study introduces an inexact, but ultra-low power, computing architecture devoted to the embedded analysis of bio-signals. The platform operates at extremely low voltage supply levels to minimise energy consumption. In this scenario, the reliability of static RAM (SRAM) memories cannot be guaranteed when using conventional 6-transistor implementations. While error correction codes and dedicated SRAM implementations can ensure correct operations in this near-threshold regime, they incur in significant area and energy overheads, and should therefore be employed judiciously. Herein, the authors propose a novel scheme to design inexact computing architectures that selectively protects memory regions based on their significance, i.e. their impact on the end-to-end quality of service, as dictated by the bio-signal application characteristics. The authors illustrate their scheme on an industrial benchmark application performing the power spectrum analysis of electrocardiograms. Experimental evidence showcases that a significance-based memory protection approach leads to a small degradation in the output quality with respect to an exact implementation, while resulting in substantial energy gains, both in the memory and the processing subsystem.
Resumo:
This letter analyzes the performance of a low complexity detection scheme for a multi-carrier index keying (MCIK) with orthogonal frequency division multiplexing (OFDM) system over two-wave with diffused power (TWDP) fading channels. A closed-form expression for the average pairwise error probability (PEP) over TWDP fading channels is derived. This expression is used to analyze the performance of MCIK-OFDM in moderate, severe and extreme fading conditions. The presented results provide an insight on the performance of MCIK-OFDM for wireless communication systems that operate in enclosed metallic structures such as in-vehicular device-to-device (D2D) wireless networks.