985 resultados para Environmental remediation
Resumo:
Greater attention is being directed towards incorporating greenery into the built environment as increasing global urbanisation drives the search for sustainable urbanism. This research takes a parametric approach to studying living wall dynamics using three methods to cover a diversity of design parameters and performance criteria. The findings led to a functional typology for living walls based on a range of design, context and performance parameters wider than previously identified. Such parametric studies offer valuable insights into 'transfunctional' living walls for homes, schools and public spaces.
Resumo:
Bioremediation, which is the exploitation of the intrinsic ability of environmental microbes to degrade and remove harmful compounds from nature, is considered to be an environmentally sustainable and cost-effective means for environmental clean-up. However, a comprehensive understanding of the biodegradation potential of microbial communities and their response to decontamination measures is required for the effective management of bioremediation processes. In this thesis, the potential to use hydrocarbon-degradative genes as indicators of aerobic hydrocarbon biodegradation was investigated. Small-scale functional gene macro- and microarrays targeting aliphatic, monoaromatic and low molecular weight polyaromatic hydrocarbon biodegradation were developed in order to simultaneously monitor the biodegradation of mixtures of hydrocarbons. The validity of the array analysis in monitoring hydrocarbon biodegradation was evaluated in microcosm studies and field-scale bioremediation processes by comparing the hybridization signal intensities to hydrocarbon mineralization, real-time polymerase chain reaction (PCR), dot blot hybridization and both chemical and microbiological monitoring data. The results obtained by real-time PCR, dot blot hybridization and gene array analysis were in good agreement with hydrocarbon biodegradation in laboratory-scale microcosms. Mineralization of several hydrocarbons could be monitored simultaneously using gene array analysis. In the field-scale bioremediation processes, the detection and enumeration of hydrocarbon-degradative genes provided important additional information for process optimization and design. In creosote-contaminated groundwater, gene array analysis demonstrated that the aerobic biodegradation potential that was present at the site, but restrained under the oxygen-limited conditions, could be successfully stimulated with aeration and nutrient infiltration. During ex situ bioremediation of diesel oil- and lubrication oil-contaminated soil, the functional gene array analysis revealed inefficient hydrocarbon biodegradation, caused by poor aeration during composting. The functional gene array specifically detected upper and lower biodegradation pathways required for complete mineralization of hydrocarbons. Bacteria representing 1 % of the microbial community could be detected without prior PCR amplification. Molecular biological monitoring methods based on functional genes provide powerful tools for the development of more efficient remediation processes. The parallel detection of several functional genes using functional gene array analysis is an especially promising tool for monitoring the biodegradation of mixtures of hydrocarbons.
Resumo:
Growing human populations and increasing exploitation of natural resources threaten nature all over the world. Tropical countries are especially vulnerable to human impact because of the high number of species, most of these endemic and still unknown. Madagascar is one of the centers of high biodiversity and renowned for its unique species. However, during the last centuries many endemic species have gone extinct and more are endangered. Because of high natural values, Madagascar is one of the global conservation priorities. The establishment of Ranomafana National Park (RNP) was intended to preserve the unique nature of Madagascar. Containing several endemic and threatened species, Ranomafana has been selected as one of UNESCO’s World Natural Heritage sites. However, due to strong human pressures the region immediately surroundings the protected area has severely degraded. Aims of this thesis were to inventory carabid fauna in RNP and evaluate their use as indicators of the environmental change. Carabid beetles were collected from protected area (secondary and primary forests) and from its degraded surrounding area. Collecting was mostly conducted by hand during years 2000-2005. Species compositions between the protected area and its surroundings were compared, and species habitat preferences and seasonal variations were studied. In total, 4498 individuals representing 127 carabid species (of which 38 are new species) were collected. Species compositions within and outside of the protected area were markedly different. Most of the species preferred forest as their primary habitat and were mainly collected from trees and bushes. Their value as indicators is based on their different habitat requirements and sensitivity to environmental variables. Some of the species were found only in the protected forest, some occupied also the degraded forests and some preferred open areas. Carabid fauna is very species rich in Ranomafana and there are still many species to be found. Most of the species are arboreal and probably cannot survive in the deforested areas outside the park. This is very likely also the case for other species. Establishment and continued protection of RNP is probably the only way to conserve this globally important area. However, new occupations and land use methods are urgently needed by the local people for improving their own lives while maintaining the forest intact.
Resumo:
Fabrication of multilayer ultrathin composite films composed of nanosized titanium dioxide particles (P25, Degussa) and polyelectrolytes (PELs), such as poly(allyl amine hydrochloride) (PAH) and poly(styrene sulfonate sodium salt) (PSS), on glass substrates using the layer-by-layer (LbL) assembly technique and its potentia application for the photodegradation of rhodamine B under ultraviolet (UV) irradiation has been reported. The polyelectrolytes and TiO2 were deposited on glass substrates at pH 2.5 and the growth of the multilayers was studied using UV/vis speccrophotometer. Thicknes measurements of the films showed a linear increase in film thickness with increase in number of bilayers. The surface microstructure of the thin films was characterized by field emission scanning electron microscope. The ability of the catalysts immobilized by this technique was compared with TiO2 films prepared by drop casting and spin coating methods. Comparison has been made in terms of film stability and photodegradation of rhodamine B. Process variables such as the effect of surface area of the multilayers, umber of bilayers, and initial dye concentration on photodegradation of rhodamine B were studied. Degradation efficiency increased with increase in number of catalysts (total surface area) and bilayers. Kinetics analysis indicated that the photodegradation rates follow first order kinetics. Under maximum loading of TiO2, with five catalyst slides having 20 bilayers of polyelectrolyte/TiO2 on each, 100 mL of 10 mg/L dye solution could be degraded completely in 4 h. The same slides could be reused with the same efficiency for several cycles. This study demonstrates that nanoparticles can be used in wastewater treatment using a simple immobilization technique. This makes the process an attractive option for scale up.
Resumo:
This research investigates techniques to analyse long duration acoustic recordings to help ecologists monitor birdcall activities. It designs a generalized algorithm to identify a broad range of bird species. It allows ecologists to search for arbitrary birdcalls of interest, rather than restricting them to just a very limited number of species on which the recogniser is trained. The algorithm can help ecologists find sounds of interest more efficiently by filtering out large volumes of unwanted sounds and only focusing on birdcalls.
Resumo:
This research consists of a broad study in three parts of the social and environmental reporting practices of organisations operating in or sourcing products from a developing country, in this case Bangladesh. The first part of this study explores the social and environmental disclosure practices of the Bangladesh Garment Manufacturers and Exporters Association (BGMEA), the body responsible for organising the activities of 4,200 entities involved in the export of garments from Bangladesh. By way of interview, this part documents the opinions of numerous senior executives from the BGMEA with regard to any changes in the degree of social and environmental pressures since 1985. Utilising a complementary theoretical perspective that includes legitimacy theory, stakeholder theory and institutional theory this part then performs an analysis of the BGMEA's annual reports (1987-2005), t o explore the link between the perceived pressures and changes entailed therein and the social and environmental disclosure practices of the BGMEA across the period of analysis. The results show that the disclosure practices of BGMEA appear to be directly driven by the changing expectations of multinational buying companies- the group deemed to be the most powerful stakeholder group. This section is the first known study to interview managers from a large organisation in a developing country about shifting stakeholder expectations and then to link these changing expectations to annual report disclosures across an extended period of analysis. The findings then directly lead to the second major part of this thesis which investigates the social and environmental disclosure practices of two major multinational buying companies: Nike and H&M. Adopting a joint consideration of legitimacy theory and media agenda setting theory, this second part investigates the linkage between negative media attention and positive corporate social and environmental disclosures over a 19 year period. The results support the view that for those industry-related social and environmental issues that attract the greatest amount of negative media attention, these companies react by providing positive social and environmental disclosures. The results were particularly significant in relation to labour practices in developing countries-the issue that attracts the greatest amount of negative media attention for the companies in question. While the second part demonstrates that the media influences particular disclosure practices, the third part of the thesis shows what drives the media. Based on the speculation provided in the second part, the third part tests the proposition that the media is an important ally of NGOs in their quest to influence change in corporate accountabilities. Through the use of interviews, the results of this part of the study provide evidence to support previously untested perspectives about NGOs' utilisation of the m edia. The results reveal that NGOs use the media because the media is responsible for creating real changes in the operations and disclosure policies of organisations sourcing products from Bangladesh. The various pressures impacting the activities of organisations operating in or sourcing products from developing countries constitutes a fascinating area of investigation, and it is hoped that this study will motivate further research in this area.
Resumo:
Background Expenditure on dental and oral health services in Australia is $3.4 billion AUD annually. This is the sixth highest health cost and accounts for 7 % of total national health expenditure. Approximately 49 % of Australian children aged 6 years have caries experience in their deciduous teeth and this is rising. The aetiology of dental caries involves a complex interplay of individual, behavioural, social, economic, political and environmental conditions, and there is increasing interest in genetic predisposition and epigenetic modification. Methods The Oral Health Sub-study; a cross sectional study of a birth cohort began in November 2012 by examining mothers and their children who were six years old by the time of initiation of the study, which is ongoing. Data from detailed questionnaires of families from birth onwards and data on mothers’ knowledge, attitudes and practices towards oral health collected at the time of clinical examination are used. Subjects’ height, weight and mid-waist circumference are taken and Body Mass Index (BMI) computed, using an electronic Bio-Impedance balance. Dental caries experience is scored using the International Caries Detection and Assessment System (ICDAS). Saliva is collected for physiological measures. Salivary Deoxyribose Nucleic Acid (DNA) is extracted for genetic studies including epigenetics using the SeqCap Epi Enrichment Kit. Targets of interest are being confirmed by pyrosequencing to identify potential epigenetic markers of caries risk. Discussion This study will examine a wide range of potential determinants for childhood dental caries and evaluate inter-relationships amongst them. The findings will provide an evidence base to plan and implement improved preventive strategies.
Resumo:
This chapter describes biological and environmental determinants of the health of Australians, providing a background to the development of successful public health activity. You will recall from the introduction to Section 2 that health determinants are the biomedical, genetic, behavioural, socioeconomic and environmental factors that impact on health and wellbeing. These determinants can be influenced by interventions and by resources and systems (Australian Institute of Health and Welfare (AIHW) AIHW 2012a). Many factors combine to affect the health of individuals and communities. People’s circumstances and the environment determine whether a population is healthy or not. Factors such as where people live, the state of their environment, genetics, their education level and income, and their relationships with friends and family are all likely to impact on their health. The determinants of population health reflect the context of people’s lives; however, people have limited control over many of these determinants (WHO 2007).
Resumo:
Chronic rhinosinusitis is one of the most common chronic respiratory tract diseases affecting up to 15% of the adult population in the Western world. It may be perpetuated by factors predisposing to sinus ostial obstruction together with inflammatory changes in the sinus mucosa. Chronic rhinosinusitis is associated with asthma, and it may represent the same disease process. Chronic rhinosinusitis with nasal polyposis (CRSwNP) and asthma share also the characteristic inflammatory features and histopathologic feature of airway remodelling. Remodelling is considered as a key event in the pathogenesis of asthma. It is controlled by a delicate balance between the matrix metalloproteinases (MMPs) and their regulators. The purpose of the present study was to evaluate the microbiological findings, inflammatory features and MMP and tissue inhibitor of metalloproteinases-1 (TIMP-1) expression in CRSwNP. The results were related to the patient history, exposure to moisture and clinical outcome in order to find out possible explanations for the etiology and chronicity of CRSwNP. Bacterial culture results were similar in patients and in controls and do not explain the chronic course of CRSwNP. The presence of fungi seems to be more common in CRSwNP than chronic rhinosinusitis in general, and they should be actively searched for using microbiological as well as histological methods. Typical outdoor fungal species were found in nasal lavage samples taken from controls in the autumn but not in the winter, reflecting environmental exposure. Exposure to moisture was reported by 46% of the CRSwNP patients, which is in accordance to the Finnish general population. Exposed patients did not differ significantly from non-exposed subjects with regards to microbiological findings, tissue eosinophilia and clinical outcome. Significantly elevated levels of collagenase-2 (MMP-8) and interleukin (IL)-8 but not tumour necrosis factor-α were found in CRSwNP patients. In particular, the activation of mesenchymal-type MMP-8 but not polymorphonuclear-type MMP-8 was associated with elevated IL-8 levels. IL-8 and MMP-8 may form an inductive cytokine-proteinase cascade in CRSwNP pathogenesis and provide a target for novel therapies and a diagnostic tool for monitoring CRSwNP treatment. The proteolytic spectrum is different in eosinophilic and non-eosinophilic CRSwNP with the up-regulation of MMP-8 and MMP-9 in non-eosinophilic CRSwNP, suggesting different pathophysiology in these subgroups. The lack of MMP up-regulation was associated with a poor prognostic factor and worse clinical outcome, representing a possible synergic anti-inflammatory function of MMP-8 and MMP-9 in CRSwNP. This study provides new information about possible immunologic mechanisms in the pathogenesis of CRSwNP. The recently discovered anti-inflammatory/ defensive properties of MMP-8 and MMP-9 in animal models are reported for the first time in a clinical setting in human inflammatory diseases.
Resumo:
This book provides an overview of state of the art assessments of water quality; with an understanding how water quality is affected, and improving water quality for irrigation, drinking and recreation activities.
Resumo:
Wood-degrading fungi are able to degrade a large range of recalcitrant pollutants which resemble the lignin biopolymer. This ability is attributed to the production of lignin-modifying enzymes, which are extracellular and non-specific. Despite the potential of fungi in bioremediation, there is still an understanding gap in terms of the technology. In this thesis, the feasibility of two ex situ fungal bioremediation methods to treat contaminated soil was evaluated. Treatment of polycyclic aromatic hydrocarbons (PAHs)-contaminated marsh soil was studied in a stirred slurry-phase reactor. Due to the salt content in marsh soil, fungi were screened for their halotolerance, and the white-rot fungi Lentinus tigrinus, Irpex lacteus and Bjerkandera adusta were selected for further studies. These fungi degraded 40 - 60% of a PAH mixture (phenanthrene, fluoranthene, pyrene and chrysene) in a slurry-phase reactor (100 ml) during 30 days of incubation. Thereafter, B. adusta was selected to scale-up and optimize the process in a 5 L reactor. Maximum degradation of dibenzothiophene (93%), fluoranthene (82%), pyrene (81%) and chrysene (83%) was achieved with the free mycelium inoculum of the highest initial biomass (2.2 g/l). In autoclaved soil, MnP was the most important enzyme involved in PAH degradation. In non-sterile soil, endogenous soil microbes together with B. adusta also degraded the PAHs extensively, suggesting a synergic action between soil microbes and the fungus. A fungal solid-phase cultivation method to pretreat contaminated sawmill soil with high organic matter content was developed to enhance the effectiveness of the subsequent soil combustion. In a preliminary screening of 146 fungal strains, 28 out of 52 fungi, which extensively colonized non-sterile contaminated soil, were litter-decomposing fungi. The 18 strains further selected were characterized by their production of lignin-modifying and hydrolytic enzymes, of which MnP and endo-1,4-β-glucanase were the main enzymes during cultivation on Scots pine (Pinus sylvestris) bark. Of the six fungi selected for further tests, Gymnopilus luteofolius, Phanerochaete velutina, and Stropharia rugosoannulata were the most active soil organic matter degraders. The results showed that a six-month pretreatment of sawmill soil would result in a 3.5 - 9.5% loss of organic matter, depending on the fungus applied. The pretreatment process was scaled-up for a 0.56 m3 reactor, in which perforated plastic tubes filled with S. rugosoannulata growing on pine bark were introduced into the soil. The fungal pretreatment resulted in a soil mass loss of 30.5 kg, which represents 10% of the original soil mass (308 kg). Despite the fact that Scots pine bark contains several antimicrobial compounds, it was a suitable substrate for fungal growth and promoter of the production of oxidative enzymes, as well as an excellent and cheap natural carrier of fungal mycelium. This thesis successfully developed two novel fungal ex situ bioremediation technologies and introduce new insights for their further full-scale application. Ex situ slurry-phase fungal reactors might be applied in cases when the soil has a high water content or when the contaminant bioavailability is low; for example, in wastewater treatment plants to remove pharmaceutical residues. Fungal solid-phase bioremediation is a promising remediation technology to ex situ or in situ treat contaminated soil.
Resumo:
Agriculture is an economic activity that heavily relies on the availability of natural resources. Through its role in food production agriculture is a major factor affecting public welfare and health, and its indirect contribution to gross domestic product and employment is significant. Agriculture also contributes to numerous ecosystem services through management of rural areas. However, the environmental impact of agriculture is considerable and reaches far beyond the agroecosystems. The questions related to farming for food production are, thus, manifold and of great public concern. Improving environmental performance of agriculture and sustainability of food production, sustainabilizing food production, calls for application of wide range of expertise knowledge. This study falls within the field of agro-ecology, with interphases to food systems and sustainability research and exploits the methods typical of industrial ecology. The research in these fields extends from multidisciplinary to interdisciplinary and transdisciplinary, a holistic approach being the key tenet. The methods of industrial ecology have been applied extensively to explore the interaction between human economic activity and resource use. Specifically, the material flow approach (MFA) has established its position through application of systematic environmental and economic accounting statistics. However, very few studies have applied MFA specifically to agriculture. The MFA approach was used in this thesis in such a context in Finland. The focus of this study is the ecological sustainability of primary production. The aim was to explore the possibilities of assessing ecological sustainability of agriculture by using two different approaches. In the first approach the MFA-methods from industrial ecology were applied to agriculture, whereas the other is based on the food consumption scenarios. The two approaches were used in order to capture some of the impacts of dietary changes and of changes in production mode on the environment. The methods were applied at levels ranging from national to sector and local levels. Through the supply-demand approach, the viewpoint changed between that of food production to that of food consumption. The main data sources were official statistics complemented with published research results and expertise appraisals. MFA approach was used to define the system boundaries, to quantify the material flows and to construct eco-efficiency indicators for agriculture. The results were further elaborated for an input-output model that was used to analyse the food flux in Finland and to determine its relationship to the economy-wide physical and monetary flows. The methods based on food consumption scenarios were applied at regional and local level for assessing feasibility and environmental impacts of relocalising food production. The approach was also used for quantification and source allocation of greenhouse gas (GHG) emissions of primary production. GHG assessment provided, thus, a means of crosschecking the results obtained by using the two different approaches. MFA data as such or expressed as eco-efficiency indicators, are useful in describing the overall development. However, the data are not sufficiently detailed for identifying the hot spots of environmental sustainability. Eco-efficiency indicators should not be bluntly used in environmental assessment: the carrying capacity of the nature, the potential exhaustion of non-renewable natural resources and the possible rebound effect need also to be accounted for when striving towards improved eco-efficiency. The input-output model is suitable for nationwide economy analyses and it shows the distribution of monetary and material flows among the various sectors. Environmental impact can be captured only at a very general level in terms of total material requirement, gaseous emissions, energy consumption and agricultural land use. Improving environmental performance of food production requires more detailed and more local information. The approach based on food consumption scenarios can be applied at regional or local scales. Based on various diet options the method accounts for the feasibility of re-localising food production and environmental impacts of such re-localisation in terms of nutrient balances, gaseous emissions, agricultural energy consumption, agricultural land use and diversity of crop cultivation. The approach is applicable anywhere, but the calculation parameters need to be adjusted so as to comply with the specific circumstances. The food consumption scenario approach, thus, pays attention to the variability of production circumstances, and may provide some environmental information that is locally relevant. The approaches based on the input-output model and on food consumption scenarios represent small steps towards more holistic systemic thinking. However, neither one alone nor the two together provide sufficient information for sustainabilizing food production. Environmental performance of food production should be assessed together with the other criteria of sustainable food provisioning. This requires evaluation and integration of research results from many different disciplines in the context of a specified geographic area. Foodshed area that comprises both the rural hinterlands of food production and the population centres of food consumption is suggested to represent a suitable areal extent for such research. Finding a balance between the various aspects of sustainability is a matter of optimal trade-off. The balance cannot be universally determined, but the assessment methods and the actual measures depend on what the bottlenecks of sustainability are in the area concerned. These have to be agreed upon among the actors of the area