921 resultados para Elaine Albirght
Resumo:
In this report, we present a boy with lower lip pits, distinct craniofacial dysmorphism with cleft lip and palate, central nervous system malformation, and severe mental retardation. Similar but less pronounced facial findings were present in his mentally normal mother and maternal grandfather, both presenting with lower lip pits. Cleft lip was present in patient's father. Analysis of the VWS1 and VWS2 regions were performed to elucidate the molecular basis of the phenotype of the propositus. Screening or mutations at the IRF6 gene detected a pathogenic mutation (c.960G > C) in the propositus and in his mother; and a single nucleotide polymorphism (c.175-5C > G) in the propositus and in his father. Clinical and genetic aspects of this case are discussed.
Resumo:
Os autores investigaram a relação entre dermatofitose e grupo sanguíneo ABO através da tipagem sanguínea, identificação do dermatófito isolado e resposta imune celular específica de 40 indivíduos portadores desta micose. Verificaram que o fungo Trichophyton rubrum foi isolado em 54,5% dos pacientes, sendo mais frequente em indivíduos pertencentes ao grupo sanguíneo A. A resposta imune celular, avaliada através do antígeno tricofitina, foi positiva em 25% dos pacientes estudados; a presença de reações imediatas (30 min) foi verificada em 35%. A distribuição dos grupos sanguíneos entre pacientes com dermatofitose e grupo controle foi a seguinte: 47,5% x 36% grupo A, 40% x 50% grupo O, 12,5% x 11% grupo B. Embora os autores tenham encontrado um número maior de pacientes pertencentes ao grupo sanguíneo A e infectados pelo T. rubrum, não obtiveram evidência estatística de que esses indivíduos sejam mais suscetíveis as dermatofitoses.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
In the present study, two alkaloids isolated from Pterogyne nitens, a plant native to Brazil, have been shown to induce apoptosis in human breast cancer cells. These compounds, pterogynine (PGN) and pterogynidine (PGD), were tested for their effect on a human infiltrating ductal carcinoma cell line (ZR-7531). The cell line was treated with each alkaloid at several concentrations. Time-dependence (with or without recuperation time) and concentration-dependence (in the range 0.25-10 mM) were investigated in cytotoxicity and apoptosis assays. The annexin assay indicated an apparently higher percentage of death by necrosis of malignant cells after 24 h exposure to both P. nitens extracts than the Hoechst assay. Thus, our results in the two tests demonstrated that the Hoechst assay can discriminate between late apoptotic cells and necrosis, whereas the flow cytometry-based annexin V assay cannot. We concluded that PGN and PGD have effective antineoplastic activity against human breast cancer cells in vitro, by inducing programmed cell death.
Resumo:
Episodic memory refers to the recollection of what, where and when a specific event occurred. Hippocampus is a key structure in this type of memory. Computational models suggest that the dentate gyrus (DG) and the CA3 hippocampal subregions are involved in pattern separation and the rapid acquisition of episodic memories, while CA1 is involved in memory consolidation. However there are few studies with animal models that access simultaneously the aspects ‗what-where-when . Recently, an object recognition episodic-like memory task in rodents was proposed. This task consists of two sample trials and a test phase. In sample trial one, the rat is exposed to four copies of an object. In sample trial two, one hour later, the rat is exposed to four copies of a different object. In the test phase, 1 h later, two copies of each of the objects previously used are presented. One copy of the object used in sample trial one is located in a different place, and therefore it is expected to be the most explored object.However, the short retention delay of the task narrows its applications. This study verifies if this task can be evoked after 24h and whether the pharmacological inactivation of the DG/CA3 and CA1 subregions could differentially impair the acquisition of the task described. Validation of the task with a longer interval (24h) was accomplished (animals showed spatiotemporal object discrimination and scopolamine (1 mg/kg, ip) injected pos-training impaired performance). Afterwards, the GABA agonist muscimol, (0,250 μg/μl; volume = 0,5 μl) or saline were injected in the hippocampal subregions fifteen minutes before training. Pre-training inactivation of the DG/CA3 subregions impaired the spatial discrimination of the objects (‗where ), while the temporal discrimination (‗when ) was preserved. Rats treated with muscimol in the CA1 subregion explored all the objects equally well, irrespective of place or presentation time. Our results corroborate the computational models that postulate a role for DG/CA3 in spatial pattern separation, and a role for CA1 in the consolidation process of different mnemonic episodes
Resumo:
Parkinson's disease (PD) is one of the most common neurodegenerative brain disorders and is characterized primarily by a progressive degeneration of dopaminergic neurons nigroestriatais. The main symptoms of this disease are motor alterations (bradykinesia, rigidity, tremor at rest), which can be highly disabling in advanced stages of the condition. However, there are symptomatic manifestations other than motor impairment, such as changes in cognition, mood and sensory systems. Animal models that attempt to mimic clinical features of PD have been used to understand the behavioral and neural mechanisms underlying neurophysiological disturbance of this disease. However, most models promote an intense and immediate motor impairment, consistent with advanced stages of the disease, invalidating these studies for the evaluation of its progressive nature. The administration of reserpine (a monoamine depletor) in rodents has been considered an animal model for studying PD. Recently we found that reserpine (in doses lower than those usually employed to produce the motor symptoms) promotes a memory deficit in an aversive discrimination task, without changing the motor activity. It was suggested that the administration of this drug in low doses can be useful for the study of memory deficits found in PD. Corroborating this data, in another study, acute subcutaneous administration of reserpine, while preserving motor function, led to changes in emotional context-related (but not neutral) memory tasks. The goal of this research was to study the cognitive and motor deficits in rats repeatedly treated with low doses of reserpine, as a possible model that simulates the progressive nature of the PD. For this purpose, 5-month-old male Wistar rats were submitted to a repeated treatment with vehicle or different doses of reserpine on alternate days. Cognitive and motor parameters and possible changes in neuronal function were evaluated during treatment. The main findings were: repeated administration of 0.1 mg / kg of reserpine in rats is able to induce the gradual appearance of motor signs compatible with progressive features found in patients with PD; an increase in striatal levels of oxidative stress and changes in the concentrations of glutamate in the striatum were observed five days after the end of treatment; in animals repeatedly-treated with 0. 1 mg/kg, cognitive deficits were observed only after the onset of motor symptoms, but not prior to the onset of these symptoms; 0.2 mg / kg reserpine repeated treatment has jeopardized the cognitive assessment due to the presence of severe motor deficits. Thus, we suggest that the protocol of treatment with reserpine used in this work is a viable alternative for studies of the progressive appearance of parkinsonian signs in rats, especially concerning motor symptoms. As for the cognitive symptoms, we suggest that more studies are needed, possibly using other behavioral models, and / or changing the treatment regimen
Resumo:
Bipolar disorder has been growing in several countries. It is a disease with high mortality and has been responsible by the social isolation of the patients. Bipolar patients have alterations in circadian timing system, showing a phase shift in various physiological variables. There are several arguments demonstrating alterations in circadian rhythms may be part of the bipolar disorder pathophysiology. Given the necessity for further elucidation, the goal of this study was to validate the forced desynchronization protocol as an animal model for bipolar disorder. To do this, Wistar rats were submitted to a forced desynchronization protocol which consists in a symmetrical light dark cycle with 22h. Under this protocol, rats dissociate the locomotor activity rhythm into two components: one synchronized to the light / dark cycle with 22h, and another component with period longer than 24 hours following the animal endogenous period. These rhythms with different periods sometimes there is coincidence, which we named CAP (Coincidence Active Phase) and the opposite phase, non-coincidence, called NCAP (Non-Concidence Active Phase). The hypothesis is that in CAP animals present a mania-like behavior and animals in NCAP depressive-like behavior. We found some evidence described in detail throughout this thesis. In sum, the animals under forced desynchronization protocol were more stressed, showed an increase in stereotypic behaviors such as grooming and reduction in other behaviors such as risk assessment and vertical exploration when compared to the control group. The CAP animals showed increased locomotor activity, especially during the dark phase when compared to controls (rats under T24) and less depressive behavior in the forced swim test. The animals in NCAP showed a higher anxiety in elevated plus maze, but they don t have ahnedonia. The animals under dissociation have more labeled 5HT1A cells at the amygdala area, which appoint that they have more amygdala inhibition. Taking these data together, we could partially validated the forced desynchronization protocol as an animal model for mood oscillations
Resumo:
The circadian timing system (CTS) is responsible for the generation and synchronization and the suprachiasmatic nucleus (SCN) of the hypothalamus has been described as the major circadian pacemaker in many mammalian species. The internal temporal organization managed by SCN is disturbed with aging bringing many pathological disorders that range from loss of complex cognitive performance to simple physiological functions. Therefore, our aim was perform a comparative study of the morphological aspects and neurochemical composition in the SCN of marmosets (Callithrix jacchus) adults and older using immunohistochemical techniques. We found morphometric and neurochemical changes in th SCN o folder animals in comparison to adults, among these a possible decreased in retinal projection to the SCN of older animals, found through a decline in CTB immunostaining, which can occur due atrophy and/or decreasing of fibers from the retinohypothalamic tract (RHT). The Klüver-Barrera histological technique strongly suggests a decrease in those fibers from RHT. Also, by means of a morphometric study, it is found a atrophy and numerical decline of neurons in SCN of aged animals, investigated by Nissl technique, and immunostaining with NeuN and calbindin. Relative optical density (ROD) analysis were used to evaluate the expression of some neurochemical components in SCN, such as GFAP expression, which was increased in older, result that indirectly reinforces that morphological changes occurs due the aging; the vasoactive intestinal polipeptide (VIP) showed no expression alteration in SCN of older animals; the serotonin (5-HT) was descreased in the dorsomedial portion of the SCN, and neurpeptide Y (NPY) apparently also decrease due to the increase of age. Many of these modifications were seen in other animals, such as rodents, human primates and non-human primates. These data about marmoset comes to add new information of the effect of aging on structures responsibles for the circadian rhytmicity, and that some behavioral changes controlled by th SCN, and founded in aged animals, may be caused by these morphological and neurochemical changes. Although some results have been quantitatively negative, qualitatively all analysis show significant change comparing adult and older animals, perhaps due to a low sampling number. In conclusion, the marmoset presents several morphological and neurochemical changes in the SCN of aged animals compared to adults, which may result in behavioral changes that favor pathology aging related
Resumo:
Treatment of major depression, posttraumatic stress disorder and other psychopathologies with antidepressants can be associated with improvement of the cognitive deficits related to these disorders. Although the mechanisms of these effects are not completely elucidated, alterations in extinction of aversive memories are believed to be present in these psychopathologies. Moreover, researches with laboratory animals usually focus on male subjects, and we have recently verified that extinction of an aversive task is reduced in female rats when compared to males. In the present study, female rats were long-term treated with clinically used antidepressants (fluoxetine, nortriptyline or mirtazapine) and tested in the plus-maze discriminative avoidance and forced swimming tests in order to evaluate learning, memory, extinction, anxiety and depression-related behaviors. All groups learned the task, but learning was somewhat faster in nortriptyline and mirtazapine-treated animals . Task retrieval was also showed by all experimental groups. Chronic treatment with fluoxetine, but not with the other antidepressants, increased extinction of the discriminative task. In the forced swimming test, animals treated with fluoxetine and mirtazapine showed decreased immobility duration. In conclusion, antidepressants interfere with learning and female rats treated with fluoxetine presented increased extinction of the aversive memory task. On the other hand, both fluoxetine and mirtazapine were effective in the forced swimming test, suggesting dissociation between the antidepressant effects and the extinction of aversive memories
Resumo:
Anxiety is an emotional phenomenon, and normally it is interpreted as an adaptative behavior front to adversities. In its pathological form, anxiety can severely affect aspects related to the personal and professional life. Studies have shown a close relationship between anxiety disorders and aversive memory processing. Considering that the pharmacotherapy of anxiety disorders is still limited, innovative anxiolytic agents are needed. In this regard, neuropeptides systems are interesting therapeutic targets to the treatment of psychopathologies. Neuropeptide S (NPS), a 20-aminoacid peptide, is the endogenous ligand of a G-protein coupled receptor (NPSR), which has been reported to evoke hyperlocomotion, awakefull states, besides anxiolysis and memory improvements in rodents. This study aimed to investigate the effects of biperiden (BPR; an amnesic drug), diazepam (DZP; an anxiolytic drug) and NPS at three distinct times: pre-training, post-training, and pre-test, in order to assess anxiety and memory process in the same animal model. The elevated Tmaze (ETM) is an apparatus derived from the elevated plus-maze test, which consists of one enclosed and two open arms. The procedure is based on the avoidance of open spaces learned during training session, in which mice were exposed to the enclosed arm as many times as needed to stay 300 s. In the test session, memory is assessed by re-exposing the mouse to the enclosed arm and the latency to enter an open arm was recorded. When injected pre-training, BPR (1 mg/kg) impaired learning and memory processing; DZP (1 and 2 mg/kg) evoked anxiolysis, but only at the dose of 2 mg/kg impaired memory; and NPS 0.1 nmol induced anxiolysis without affecting memory. Post-training injection of DZP (2 mg/kg) or BPR (1 and 3 mg/kg) did not affect memory consolidation, while the post-trainning administration of NPS 1 nmol, but not 0.1 nmol, improved memory in mice. Indeed, pre-trainning administration of NPS 1 nmol did not prevent memory impairment elicited by BPR (2 mg/kg, injected before training). In the open field test, BPR 1 mg/kg and NPS 1 nmol induced hyperlocomotion in mice. In conclusion, the proposed ETM task is practical for the detection of the anxiolytic and amnesic effects of drugs. The anxiolytic and memory enhancement effects of NPS were detected in the ETM task, and reinforce the role of NPS system as an interesting therapeutic target to the treatment of anxiety disorders
Resumo:
Neuropeptide S (NPS) is the endogenous ligand of a G-protein coupled receptor. Preclinical studies have shown that NPSR receptor activation can promote arousal, anxiolytic-like behavioral, decrease in food intake, besides hyperlocomotion, which is a robust but not well understood phenomenon. Previous findings suggest that dopamine transmission plays a crucial role in NPS hyperactivity. Considering the close relationship between dopamine and Parkinson Disease (PD), and also that NPSR receptors are expressed on dopaminergic nuclei in the brain, the current study attempted to investigate the effects of NPS in motor deficits induced by intracerebroventricular (icv) administration of 6-OHDA and systemic administration of haloperidol. Motor deficits induced by 6-OHDA and haloperidol were evaluated on Swiss mice in the rota-rod and catalepsy test. Time on the rotating rod and time spent immobile in the elevated bar were measured respectively in each test. L-Dopa, a classic antiparkinsonian drug, and NPS were administrated in mice submitted to one of the animal models of PD related above. 6-OHDA injection evoked severe motor impairments in rota-rod test, while the cataleptic behavior of 6-OHDA injected mice was largely variable. The administration of L-Dopa (25 mg/kg) and NPS (0,1 and 1 nmol) reversed motor impairments induced by 6-OHDA in the rota-rod. Haloperidolinduced motor deficits on rota-rod and catalepsy tests which were reversed by L-Dopa (100 e 400 mg/kg), but not by NPS (0,1 and 1 nmol) administration. The association of L-Dopa 10 mg/kg and NPS 1 nmol was also unable to counteract haloperidol-induced motor deficits. To summarize, 6-OHDA-, but not haloperidol-, induced motor deficits were reversed by the central administration of NPS. These data suggest that NPS possibly facilitates dopamine release in basal ganglia, what would explain the overcome of motor performance promoted by NPS administration in animals pretreated with 6-OHDA, but not haloperidol. Finally, the presented findings point, for the first time, to the potential of NPSR agonist as an innovative treatment for PD.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neuropeptide S (NPS) is an endogenous 20-aminoacid peptide which binds a G protein-coupled receptor named NPSR. This peptidergic system is involved in the modulation of several biological functions, such as locomotion, anxiety, nociception, food intake and motivational behaviors. Studies have shown the participation of NPSR receptors in mediating the hyperlocomotor effects of NPS. A growing body of evidence suggests the participation of adenosinergic, dopaminergic and CRF systems on the hyperlocomotor effects of NPS. Considering that little is known about the role of dopaminergic system in mediating NPS-induced hyperlocomotion, the present study aims to investigate the locomotor actions of intracerebroventricular (icv) NPS in mice pretreated with α-metil-p-tirosine (AMPT, inhibitor of dopamine synthesis), reserpine (inhibitor of dopamine vesicle storage) or sulpiride (D2 receptor antagonist) in the open field test. A distinct group of animals received the same pretreatments described above (AMPT, reserpine or sulpiride) and the hyperlocomotor effects of methylphenidate (dopamine reuptake inhibitor) were investigated in the open field. NPS and methylphenidate increased the mouse locomotor activity. AMPT per se did not change the locomotion of the animals, but it partially reduced the hyperlocomotion of methylphenidate. The pretreatment with AMPT did not affect the psychostimulant effects of NPS. Both reserpine and sulpiride inhibited the stimulatory actions of NPS and methylphenidate. These findings show that the hyperlocomotor effects of methylphenidate, but not NPS, were affected by the pretreatment with AMPT. Furthermore, methylphenidate- and NPS-induced hyperlocomotion was impaired by reserpine and sulpiride pretreatments. Together, data suggests that NPS can increase locomotion even when the synthesis of catecholamines was impaired. Additionally, the hyperlocomotor effects of NPS and methylphenidate depend on monoamines vesicular storaged, mainly dopamine, and on the activation of D2 receptors. The psychostimulant effects of NPS via activation of dopaminergic system display clinical significance on the treatment of diseases which involves dopaminergic pathways, such as Parkinson s disease and drug addiction